L(s) = 1 | + 2·2-s + 3·4-s + 4·8-s + 5·16-s + 4·17-s − 25-s − 4·31-s + 6·32-s + 8·34-s − 2·49-s − 2·50-s − 8·62-s + 7·64-s + 12·68-s − 4·98-s − 3·100-s − 121-s − 12·124-s + 127-s + 8·128-s + 131-s + 16·136-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | + 2·2-s + 3·4-s + 4·8-s + 5·16-s + 4·17-s − 25-s − 4·31-s + 6·32-s + 8·34-s − 2·49-s − 2·50-s − 8·62-s + 7·64-s + 12·68-s − 4·98-s − 3·100-s − 121-s − 12·124-s + 127-s + 8·128-s + 131-s + 16·136-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
Λ(s)=(=(15681600s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(15681600s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
15681600
= 26⋅34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
3.90575 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 15681600, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
7.096114238 |
L(21) |
≈ |
7.096114238 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | | 1 |
| 5 | C2 | 1+T2 |
| 11 | C2 | 1+T2 |
good | 7 | C2 | (1+T2)2 |
| 13 | C2 | (1+T2)2 |
| 17 | C1 | (1−T)4 |
| 19 | C2 | (1+T2)2 |
| 23 | C1×C1 | (1−T)2(1+T)2 |
| 29 | C2 | (1+T2)2 |
| 31 | C1 | (1+T)4 |
| 37 | C2 | (1+T2)2 |
| 41 | C1×C1 | (1−T)2(1+T)2 |
| 43 | C2 | (1+T2)2 |
| 47 | C1×C1 | (1−T)2(1+T)2 |
| 53 | C2 | (1+T2)2 |
| 59 | C2 | (1+T2)2 |
| 61 | C2 | (1+T2)2 |
| 67 | C2 | (1+T2)2 |
| 71 | C2 | (1+T2)2 |
| 73 | C2 | (1+T2)2 |
| 79 | C1×C1 | (1−T)2(1+T)2 |
| 83 | C1×C1 | (1−T)2(1+T)2 |
| 89 | C2 | (1+T2)2 |
| 97 | C1×C1 | (1−T)2(1+T)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.610129517064521063871200790209, −8.231853752708922034883465134851, −7.73457761912609279684093296340, −7.63124012438696137060726654141, −7.21266372005966326085810159255, −7.16929713735343097466295311344, −6.32173419051543895789902153128, −6.02575989141623421100365172667, −5.79965596381305496694007162054, −5.38116083081143528284756870931, −5.09486353341852729646412979775, −4.96518584966744755803389524303, −4.05991564912919533687928125093, −3.72461624341634139208034025797, −3.55230901344726836392846336629, −3.23362658755031601378844349088, −2.74015688377842915809085811906, −2.04403492347991883044002320281, −1.55272786336730007740934220132, −1.25772074744669751086525290423,
1.25772074744669751086525290423, 1.55272786336730007740934220132, 2.04403492347991883044002320281, 2.74015688377842915809085811906, 3.23362658755031601378844349088, 3.55230901344726836392846336629, 3.72461624341634139208034025797, 4.05991564912919533687928125093, 4.96518584966744755803389524303, 5.09486353341852729646412979775, 5.38116083081143528284756870931, 5.79965596381305496694007162054, 6.02575989141623421100365172667, 6.32173419051543895789902153128, 7.16929713735343097466295311344, 7.21266372005966326085810159255, 7.63124012438696137060726654141, 7.73457761912609279684093296340, 8.231853752708922034883465134851, 8.610129517064521063871200790209