Properties

Label 4-3960e2-1.1-c0e2-0-3
Degree $4$
Conductor $15681600$
Sign $1$
Analytic cond. $3.90575$
Root an. cond. $1.40580$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 4·8-s + 5·16-s + 4·17-s − 25-s − 4·31-s + 6·32-s + 8·34-s − 2·49-s − 2·50-s − 8·62-s + 7·64-s + 12·68-s − 4·98-s − 3·100-s − 121-s − 12·124-s + 127-s + 8·128-s + 131-s + 16·136-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  + 2·2-s + 3·4-s + 4·8-s + 5·16-s + 4·17-s − 25-s − 4·31-s + 6·32-s + 8·34-s − 2·49-s − 2·50-s − 8·62-s + 7·64-s + 12·68-s − 4·98-s − 3·100-s − 121-s − 12·124-s + 127-s + 8·128-s + 131-s + 16·136-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15681600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15681600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15681600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(3.90575\)
Root analytic conductor: \(1.40580\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15681600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(7.096114238\)
\(L(\frac12)\) \(\approx\) \(7.096114238\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
11$C_2$ \( 1 + T^{2} \)
good7$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_1$ \( ( 1 - T )^{4} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_1$ \( ( 1 + T )^{4} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.610129517064521063871200790209, −8.231853752708922034883465134851, −7.73457761912609279684093296340, −7.63124012438696137060726654141, −7.21266372005966326085810159255, −7.16929713735343097466295311344, −6.32173419051543895789902153128, −6.02575989141623421100365172667, −5.79965596381305496694007162054, −5.38116083081143528284756870931, −5.09486353341852729646412979775, −4.96518584966744755803389524303, −4.05991564912919533687928125093, −3.72461624341634139208034025797, −3.55230901344726836392846336629, −3.23362658755031601378844349088, −2.74015688377842915809085811906, −2.04403492347991883044002320281, −1.55272786336730007740934220132, −1.25772074744669751086525290423, 1.25772074744669751086525290423, 1.55272786336730007740934220132, 2.04403492347991883044002320281, 2.74015688377842915809085811906, 3.23362658755031601378844349088, 3.55230901344726836392846336629, 3.72461624341634139208034025797, 4.05991564912919533687928125093, 4.96518584966744755803389524303, 5.09486353341852729646412979775, 5.38116083081143528284756870931, 5.79965596381305496694007162054, 6.02575989141623421100365172667, 6.32173419051543895789902153128, 7.16929713735343097466295311344, 7.21266372005966326085810159255, 7.63124012438696137060726654141, 7.73457761912609279684093296340, 8.231853752708922034883465134851, 8.610129517064521063871200790209

Graph of the $Z$-function along the critical line