Properties

Label 2.3960.8t11.a
Dimension $2$
Group $Q_8:C_2$
Conductor $3960$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:\(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Artin number field: Galois closure of 8.0.225815040000.1
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-30}, \sqrt{-55})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 233 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 39 + 99\cdot 233 + 116\cdot 233^{2} + 120\cdot 233^{3} + 135\cdot 233^{4} +O(233^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 62 + 52\cdot 233 + 88\cdot 233^{2} + 102\cdot 233^{3} + 87\cdot 233^{4} +O(233^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 114 + 34\cdot 233 + 155\cdot 233^{2} + 80\cdot 233^{3} + 211\cdot 233^{4} +O(233^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 173 + 117\cdot 233 + 133\cdot 233^{2} + 195\cdot 233^{3} + 62\cdot 233^{4} +O(233^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 178 + 124\cdot 233 + 166\cdot 233^{2} + 232\cdot 233^{3} + 65\cdot 233^{4} +O(233^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 189 + 189\cdot 233 + 94\cdot 233^{2} + 10\cdot 233^{3} + 177\cdot 233^{4} +O(233^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 199 + 3\cdot 233 + 146\cdot 233^{2} + 81\cdot 233^{3} + 212\cdot 233^{4} +O(233^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 215 + 76\cdot 233 + 31\cdot 233^{2} + 108\cdot 233^{3} + 212\cdot 233^{4} +O(233^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,6,7)(2,4,5,8)$
$(1,6)(2,5)(3,7)(4,8)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3,6,7)(2,8,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,5)(3,7)(4,8)$ $-2$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$ $0$
$2$ $2$ $(1,4)(2,7)(3,5)(6,8)$ $0$ $0$
$2$ $2$ $(2,5)(4,8)$ $0$ $0$
$1$ $4$ $(1,3,6,7)(2,4,5,8)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,7,6,3)(2,8,5,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,3,6,7)(2,8,5,4)$ $0$ $0$
$2$ $4$ $(1,2,6,5)(3,4,7,8)$ $0$ $0$
$2$ $4$ $(1,4,6,8)(2,3,5,7)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.