Properties

Label 4-3960e2-1.1-c0e2-0-0
Degree $4$
Conductor $15681600$
Sign $1$
Analytic cond. $3.90575$
Root an. cond. $1.40580$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s + 5·16-s − 4·17-s − 25-s − 4·31-s − 6·32-s + 8·34-s − 2·49-s + 2·50-s + 8·62-s + 7·64-s − 12·68-s + 4·98-s − 3·100-s − 121-s − 12·124-s + 127-s − 8·128-s + 131-s + 16·136-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s + 5·16-s − 4·17-s − 25-s − 4·31-s − 6·32-s + 8·34-s − 2·49-s + 2·50-s + 8·62-s + 7·64-s − 12·68-s + 4·98-s − 3·100-s − 121-s − 12·124-s + 127-s − 8·128-s + 131-s + 16·136-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15681600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15681600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15681600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(3.90575\)
Root analytic conductor: \(1.40580\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15681600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.05497860248\)
\(L(\frac12)\) \(\approx\) \(0.05497860248\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
11$C_2$ \( 1 + T^{2} \)
good7$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_1$ \( ( 1 + T )^{4} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_1$ \( ( 1 + T )^{4} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.004775370035875678549801517474, −8.509323935427188817897226767673, −8.209330854520343721483777713500, −7.82798336254782488132942299808, −7.37504485776600740668160493186, −6.99065378156788487976903773723, −6.90769472325328276005129820196, −6.40850687194899238472655216858, −6.16880070300042160950176763394, −5.61768290524021930345307389743, −5.32106622713297737144981824007, −4.61785614930289404693837308299, −4.24219269957321971810072800774, −3.49016413452305190273510091926, −3.47720801558350251072351154824, −2.38616257920987093853028129461, −2.37150468565054318804073876501, −1.81169405165641799571091610747, −1.53852408418074802007929967237, −0.16795327581745304143397884528, 0.16795327581745304143397884528, 1.53852408418074802007929967237, 1.81169405165641799571091610747, 2.37150468565054318804073876501, 2.38616257920987093853028129461, 3.47720801558350251072351154824, 3.49016413452305190273510091926, 4.24219269957321971810072800774, 4.61785614930289404693837308299, 5.32106622713297737144981824007, 5.61768290524021930345307389743, 6.16880070300042160950176763394, 6.40850687194899238472655216858, 6.90769472325328276005129820196, 6.99065378156788487976903773723, 7.37504485776600740668160493186, 7.82798336254782488132942299808, 8.209330854520343721483777713500, 8.509323935427188817897226767673, 9.004775370035875678549801517474

Graph of the $Z$-function along the critical line