L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s + 5·16-s − 4·17-s − 25-s − 4·31-s − 6·32-s + 8·34-s − 2·49-s + 2·50-s + 8·62-s + 7·64-s − 12·68-s + 4·98-s − 3·100-s − 121-s − 12·124-s + 127-s − 8·128-s + 131-s + 16·136-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s + 5·16-s − 4·17-s − 25-s − 4·31-s − 6·32-s + 8·34-s − 2·49-s + 2·50-s + 8·62-s + 7·64-s − 12·68-s + 4·98-s − 3·100-s − 121-s − 12·124-s + 127-s − 8·128-s + 131-s + 16·136-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
Λ(s)=(=(15681600s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(15681600s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
15681600
= 26⋅34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
3.90575 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 15681600, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
0.05497860248 |
L(21) |
≈ |
0.05497860248 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | | 1 |
| 5 | C2 | 1+T2 |
| 11 | C2 | 1+T2 |
good | 7 | C2 | (1+T2)2 |
| 13 | C2 | (1+T2)2 |
| 17 | C1 | (1+T)4 |
| 19 | C2 | (1+T2)2 |
| 23 | C1×C1 | (1−T)2(1+T)2 |
| 29 | C2 | (1+T2)2 |
| 31 | C1 | (1+T)4 |
| 37 | C2 | (1+T2)2 |
| 41 | C1×C1 | (1−T)2(1+T)2 |
| 43 | C2 | (1+T2)2 |
| 47 | C1×C1 | (1−T)2(1+T)2 |
| 53 | C2 | (1+T2)2 |
| 59 | C2 | (1+T2)2 |
| 61 | C2 | (1+T2)2 |
| 67 | C2 | (1+T2)2 |
| 71 | C2 | (1+T2)2 |
| 73 | C2 | (1+T2)2 |
| 79 | C1×C1 | (1−T)2(1+T)2 |
| 83 | C1×C1 | (1−T)2(1+T)2 |
| 89 | C2 | (1+T2)2 |
| 97 | C1×C1 | (1−T)2(1+T)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.004775370035875678549801517474, −8.509323935427188817897226767673, −8.209330854520343721483777713500, −7.82798336254782488132942299808, −7.37504485776600740668160493186, −6.99065378156788487976903773723, −6.90769472325328276005129820196, −6.40850687194899238472655216858, −6.16880070300042160950176763394, −5.61768290524021930345307389743, −5.32106622713297737144981824007, −4.61785614930289404693837308299, −4.24219269957321971810072800774, −3.49016413452305190273510091926, −3.47720801558350251072351154824, −2.38616257920987093853028129461, −2.37150468565054318804073876501, −1.81169405165641799571091610747, −1.53852408418074802007929967237, −0.16795327581745304143397884528,
0.16795327581745304143397884528, 1.53852408418074802007929967237, 1.81169405165641799571091610747, 2.37150468565054318804073876501, 2.38616257920987093853028129461, 3.47720801558350251072351154824, 3.49016413452305190273510091926, 4.24219269957321971810072800774, 4.61785614930289404693837308299, 5.32106622713297737144981824007, 5.61768290524021930345307389743, 6.16880070300042160950176763394, 6.40850687194899238472655216858, 6.90769472325328276005129820196, 6.99065378156788487976903773723, 7.37504485776600740668160493186, 7.82798336254782488132942299808, 8.209330854520343721483777713500, 8.509323935427188817897226767673, 9.004775370035875678549801517474