Properties

Label 2.3960.8t11.b
Dimension $2$
Group $Q_8:C_2$
Conductor $3960$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:\(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Artin number field: Galois closure of 8.0.225815040000.2
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-30}, \sqrt{-55})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 167 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 60 + 82\cdot 167 + 36\cdot 167^{2} + 82\cdot 167^{3} + 111\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 71 + 123\cdot 167 + 114\cdot 167^{2} + 90\cdot 167^{3} + 154\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 92 + 114\cdot 167 + 66\cdot 167^{2} + 155\cdot 167^{3} + 45\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 97 + 116\cdot 167 + 50\cdot 167^{2} + 92\cdot 167^{3} + 133\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 107 + 11\cdot 167 + 132\cdot 167^{2} + 68\cdot 167^{3} + 101\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 112 + 13\cdot 167 + 116\cdot 167^{2} + 5\cdot 167^{3} + 22\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 134 + 96\cdot 167 + 61\cdot 167^{2} + 100\cdot 167^{3} + 162\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 164 + 108\cdot 167 + 89\cdot 167^{2} + 72\cdot 167^{3} + 103\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6)(7,8)$
$(1,3)(2,6)(4,8)(5,7)$
$(1,2)(3,6)(4,5)(7,8)$
$(1,4,2,5)(3,7,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $-2$ $-2$
$2$ $2$ $(1,3)(2,6)(4,8)(5,7)$ $0$ $0$
$2$ $2$ $(1,8)(2,7)(3,5)(4,6)$ $0$ $0$
$2$ $2$ $(3,6)(7,8)$ $0$ $0$
$1$ $4$ $(1,4,2,5)(3,8,6,7)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,5,2,4)(3,7,6,8)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,4,2,5)(3,7,6,8)$ $0$ $0$
$2$ $4$ $(1,6,2,3)(4,7,5,8)$ $0$ $0$
$2$ $4$ $(1,8,2,7)(3,4,6,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.