L(s) = 1 | − 2·3-s − 8·7-s + 9-s − 4·13-s − 4·19-s + 16·21-s − 6·25-s + 4·27-s − 20·37-s + 8·39-s − 12·43-s + 34·49-s + 8·57-s − 4·61-s − 8·63-s − 20·67-s + 28·73-s + 12·75-s − 16·79-s − 11·81-s + 32·91-s − 4·97-s − 8·103-s + 12·109-s + 40·111-s − 4·117-s − 18·121-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 3.02·7-s + 1/3·9-s − 1.10·13-s − 0.917·19-s + 3.49·21-s − 6/5·25-s + 0.769·27-s − 3.28·37-s + 1.28·39-s − 1.82·43-s + 34/7·49-s + 1.05·57-s − 0.512·61-s − 1.00·63-s − 2.44·67-s + 3.27·73-s + 1.38·75-s − 1.80·79-s − 1.22·81-s + 3.35·91-s − 0.406·97-s − 0.788·103-s + 1.14·109-s + 3.79·111-s − 0.369·117-s − 1.63·121-s + ⋯ |
Λ(s)=(=(147456s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(147456s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
147456
= 214⋅32
|
Sign: |
1
|
Analytic conductor: |
9.40192 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 147456, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+2T+pT2 |
good | 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C2 | (1+4T+pT2)2 |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1+2T+pT2)2 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1+10T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1+6T+pT2)2 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C2 | (1+10T+pT2)2 |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C2 | (1−14T+pT2)2 |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.759776534720553396196404795081, −8.635939205168057076823393046651, −7.62957697295837367057177448880, −6.97464122003923989664965494039, −6.80509880453900742773724680138, −6.33050260025483473718379487161, −5.94298026933117547539540451748, −5.37965797861855942151102168788, −4.84373431553687523132526670248, −3.98566652809305192679300882554, −3.36730269661969347724618284285, −2.97266024838274409285785943283, −1.98277685475006180754048515240, 0, 0,
1.98277685475006180754048515240, 2.97266024838274409285785943283, 3.36730269661969347724618284285, 3.98566652809305192679300882554, 4.84373431553687523132526670248, 5.37965797861855942151102168788, 5.94298026933117547539540451748, 6.33050260025483473718379487161, 6.80509880453900742773724680138, 6.97464122003923989664965494039, 7.62957697295837367057177448880, 8.635939205168057076823393046651, 8.759776534720553396196404795081