Show commands: SageMath
Rank
The elliptic curves in class 128.a have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 128.a do not have complex multiplication.Modular form 128.2.a.a
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 128.a
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 128.a1 | 128a2 | \([0, 1, 0, -9, 7]\) | \(10976\) | \(8192\) | \([2]\) | \(8\) | \(-0.50986\) | |
| 128.a2 | 128a1 | \([0, 1, 0, 1, 1]\) | \(128\) | \(-256\) | \([2]\) | \(4\) | \(-0.85643\) | \(\Gamma_0(N)\)-optimal |