L(s) = 1 | − 6·5-s − 2·13-s + 6·17-s + 17·25-s − 20·29-s + 6·37-s − 9·49-s − 8·53-s + 12·65-s + 28·73-s − 36·85-s + 20·89-s − 4·97-s + 24·101-s + 22·109-s + 28·113-s − 2·121-s − 18·125-s + 127-s + 131-s + 137-s + 139-s + 120·145-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 2.68·5-s − 0.554·13-s + 1.45·17-s + 17/5·25-s − 3.71·29-s + 0.986·37-s − 9/7·49-s − 1.09·53-s + 1.48·65-s + 3.27·73-s − 3.90·85-s + 2.11·89-s − 0.406·97-s + 2.38·101-s + 2.10·109-s + 2.63·113-s − 0.181·121-s − 1.60·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 9.96·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(14017536s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(14017536s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
14017536
= 210⋅34⋅132
|
Sign: |
1
|
Analytic conductor: |
893.770 |
Root analytic conductor: |
5.46772 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 14017536, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8833564126 |
L(21) |
≈ |
0.8833564126 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 13 | C1 | (1+T)2 |
good | 5 | C2 | (1+3T+pT2)2 |
| 7 | C22 | 1+9T2+p2T4 |
| 11 | C22 | 1+2T2+p2T4 |
| 17 | C2 | (1−3T+pT2)2 |
| 19 | C22 | 1+18T2+p2T4 |
| 23 | C22 | 1−34T2+p2T4 |
| 29 | C2 | (1+10T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−3T+pT2)2 |
| 41 | C2 | (1+pT2)2 |
| 43 | C22 | 1+41T2+p2T4 |
| 47 | C22 | 1+89T2+p2T4 |
| 53 | C2 | (1+4T+pT2)2 |
| 59 | C22 | 1+98T2+p2T4 |
| 61 | C2 | (1+pT2)2 |
| 67 | C22 | 1−46T2+p2T4 |
| 71 | C22 | 1+97T2+p2T4 |
| 73 | C2 | (1−14T+pT2)2 |
| 79 | C22 | 1+78T2+p2T4 |
| 83 | C22 | 1−154T2+p2T4 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.515245810440513603401246871378, −8.179973661375063929673139627961, −7.75259560555948641402045641659, −7.67874062083405697403242203637, −7.37186909254632687565611469841, −7.25744860291917568378418205894, −6.42621022266829406806621269248, −6.26172620424009590100880126171, −5.50627003545573358916860676169, −5.39207713387039701470231963984, −4.69922555728763204763305805093, −4.54966527534769299636854543770, −3.95102930778469607942271498610, −3.62155193860924093862598511061, −3.29805567501927992257675175863, −3.21486104860728289780686034821, −2.10768653893582006582456553436, −1.86810220297277951543526585012, −0.77836902662681759368104591465, −0.39758180144335461761380036596,
0.39758180144335461761380036596, 0.77836902662681759368104591465, 1.86810220297277951543526585012, 2.10768653893582006582456553436, 3.21486104860728289780686034821, 3.29805567501927992257675175863, 3.62155193860924093862598511061, 3.95102930778469607942271498610, 4.54966527534769299636854543770, 4.69922555728763204763305805093, 5.39207713387039701470231963984, 5.50627003545573358916860676169, 6.26172620424009590100880126171, 6.42621022266829406806621269248, 7.25744860291917568378418205894, 7.37186909254632687565611469841, 7.67874062083405697403242203637, 7.75259560555948641402045641659, 8.179973661375063929673139627961, 8.515245810440513603401246871378