L(s) = 1 | + 2·4-s + 5·13-s + 6·17-s + 3·23-s − 25-s − 6·29-s − 11·43-s + 5·49-s + 10·52-s + 6·53-s + 13·61-s − 8·64-s + 12·68-s + 7·79-s + 6·92-s − 2·100-s − 9·101-s − 20·103-s + 6·107-s + 9·113-s − 12·116-s + 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯ |
L(s) = 1 | + 4-s + 1.38·13-s + 1.45·17-s + 0.625·23-s − 1/5·25-s − 1.11·29-s − 1.67·43-s + 5/7·49-s + 1.38·52-s + 0.824·53-s + 1.66·61-s − 64-s + 1.45·68-s + 0.787·79-s + 0.625·92-s − 1/5·100-s − 0.895·101-s − 1.97·103-s + 0.580·107-s + 0.846·113-s − 1.11·116-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 123201 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123201 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.222520154\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.222520154\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.466349474000735367213859654248, −8.859667189437764579804429393865, −8.437630909820465537698299327266, −7.931834433932656344240700788548, −7.40508922178844953963104120951, −6.90659647866798872099808206901, −6.53024570511816097436782339694, −5.82682463109169139427341828230, −5.54389361343331789376628525804, −4.86868560775346140545448422675, −3.87674723290093911300355556277, −3.54431460945942731863685650369, −2.81295877514050414010278625749, −1.96538807700825581207041103901, −1.16146606538996546209383406875,
1.16146606538996546209383406875, 1.96538807700825581207041103901, 2.81295877514050414010278625749, 3.54431460945942731863685650369, 3.87674723290093911300355556277, 4.86868560775346140545448422675, 5.54389361343331789376628525804, 5.82682463109169139427341828230, 6.53024570511816097436782339694, 6.90659647866798872099808206901, 7.40508922178844953963104120951, 7.931834433932656344240700788548, 8.437630909820465537698299327266, 8.859667189437764579804429393865, 9.466349474000735367213859654248