Properties

Label 4-3240e2-1.1-c0e2-0-6
Degree $4$
Conductor $10497600$
Sign $1$
Analytic cond. $2.61459$
Root an. cond. $1.27160$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 5-s + 7-s + 8-s + 10-s − 2·11-s + 13-s − 14-s − 16-s − 2·19-s + 2·22-s + 23-s − 26-s − 35-s + 4·37-s + 2·38-s − 40-s + 41-s − 46-s + 47-s + 49-s − 2·53-s + 2·55-s + 56-s + 59-s + 64-s − 65-s + ⋯
L(s)  = 1  − 2-s − 5-s + 7-s + 8-s + 10-s − 2·11-s + 13-s − 14-s − 16-s − 2·19-s + 2·22-s + 23-s − 26-s − 35-s + 4·37-s + 2·38-s − 40-s + 41-s − 46-s + 47-s + 49-s − 2·53-s + 2·55-s + 56-s + 59-s + 64-s − 65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10497600\)    =    \(2^{6} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2.61459\)
Root analytic conductor: \(1.27160\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10497600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5640359355\)
\(L(\frac12)\) \(\approx\) \(0.5640359355\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + T + T^{2} \)
good7$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
11$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_2$ \( ( 1 + T + T^{2} )^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$ \( ( 1 - T )^{4} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 + T + T^{2} )^{2} \)
59$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_1$ \( ( 1 - T )^{4} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.942633923580969335391689214883, −8.480676807611327247294799801035, −8.209373712572557973251502358896, −8.003579776703579370758019413072, −7.63357820498692989287934724390, −7.58152837765408716159878823074, −7.03238605825532987182737946157, −6.34197433296330745668163290648, −6.10226298989492232937594995415, −5.68749489108613563593076449986, −5.03957871765039858921651706046, −4.65063956843494897380920665463, −4.52720176469718369979864929211, −4.02992299739737853962169585471, −3.62347378956749057768147089426, −2.85468991959902631254159574940, −2.35505118207077451704885693061, −2.10995009594499634705880901142, −1.14257753522792945873190143295, −0.63088498262957786877999365299, 0.63088498262957786877999365299, 1.14257753522792945873190143295, 2.10995009594499634705880901142, 2.35505118207077451704885693061, 2.85468991959902631254159574940, 3.62347378956749057768147089426, 4.02992299739737853962169585471, 4.52720176469718369979864929211, 4.65063956843494897380920665463, 5.03957871765039858921651706046, 5.68749489108613563593076449986, 6.10226298989492232937594995415, 6.34197433296330745668163290648, 7.03238605825532987182737946157, 7.58152837765408716159878823074, 7.63357820498692989287934724390, 8.003579776703579370758019413072, 8.209373712572557973251502358896, 8.480676807611327247294799801035, 8.942633923580969335391689214883

Graph of the $Z$-function along the critical line