L(s) = 1 | − 2-s − 5-s + 7-s + 8-s + 10-s − 2·11-s + 13-s − 14-s − 16-s − 2·19-s + 2·22-s + 23-s − 26-s − 35-s + 4·37-s + 2·38-s − 40-s + 41-s − 46-s + 47-s + 49-s − 2·53-s + 2·55-s + 56-s + 59-s + 64-s − 65-s + ⋯ |
L(s) = 1 | − 2-s − 5-s + 7-s + 8-s + 10-s − 2·11-s + 13-s − 14-s − 16-s − 2·19-s + 2·22-s + 23-s − 26-s − 35-s + 4·37-s + 2·38-s − 40-s + 41-s − 46-s + 47-s + 49-s − 2·53-s + 2·55-s + 56-s + 59-s + 64-s − 65-s + ⋯ |
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10497600
= 26⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
2.61459 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 10497600, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
0.5640359355 |
L(21) |
≈ |
0.5640359355 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 3 | | 1 |
| 5 | C2 | 1+T+T2 |
good | 7 | C1×C2 | (1−T)2(1+T+T2) |
| 11 | C2 | (1+T+T2)2 |
| 13 | C1×C2 | (1−T)2(1+T+T2) |
| 17 | C1×C1 | (1−T)2(1+T)2 |
| 19 | C2 | (1+T+T2)2 |
| 23 | C1×C2 | (1−T)2(1+T+T2) |
| 29 | C2 | (1−T+T2)(1+T+T2) |
| 31 | C2 | (1−T+T2)(1+T+T2) |
| 37 | C1 | (1−T)4 |
| 41 | C1×C2 | (1−T)2(1+T+T2) |
| 43 | C2 | (1−T+T2)(1+T+T2) |
| 47 | C1×C2 | (1−T)2(1+T+T2) |
| 53 | C2 | (1+T+T2)2 |
| 59 | C1×C2 | (1−T)2(1+T+T2) |
| 61 | C2 | (1−T+T2)(1+T+T2) |
| 67 | C2 | (1−T+T2)(1+T+T2) |
| 71 | C1×C1 | (1−T)2(1+T)2 |
| 73 | C1×C1 | (1−T)2(1+T)2 |
| 79 | C2 | (1−T+T2)(1+T+T2) |
| 83 | C2 | (1−T+T2)(1+T+T2) |
| 89 | C1 | (1−T)4 |
| 97 | C2 | (1−T+T2)(1+T+T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.942633923580969335391689214883, −8.480676807611327247294799801035, −8.209373712572557973251502358896, −8.003579776703579370758019413072, −7.63357820498692989287934724390, −7.58152837765408716159878823074, −7.03238605825532987182737946157, −6.34197433296330745668163290648, −6.10226298989492232937594995415, −5.68749489108613563593076449986, −5.03957871765039858921651706046, −4.65063956843494897380920665463, −4.52720176469718369979864929211, −4.02992299739737853962169585471, −3.62347378956749057768147089426, −2.85468991959902631254159574940, −2.35505118207077451704885693061, −2.10995009594499634705880901142, −1.14257753522792945873190143295, −0.63088498262957786877999365299,
0.63088498262957786877999365299, 1.14257753522792945873190143295, 2.10995009594499634705880901142, 2.35505118207077451704885693061, 2.85468991959902631254159574940, 3.62347378956749057768147089426, 4.02992299739737853962169585471, 4.52720176469718369979864929211, 4.65063956843494897380920665463, 5.03957871765039858921651706046, 5.68749489108613563593076449986, 6.10226298989492232937594995415, 6.34197433296330745668163290648, 7.03238605825532987182737946157, 7.58152837765408716159878823074, 7.63357820498692989287934724390, 8.003579776703579370758019413072, 8.209373712572557973251502358896, 8.480676807611327247294799801035, 8.942633923580969335391689214883