Properties

Label 2.3240.6t5.e.a
Dimension $2$
Group $S_3\times C_3$
Conductor $3240$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3\times C_3$
Conductor: \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \)
Artin stem field: Galois closure of 6.0.419904000.9
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Determinant: 1.360.6t1.d.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.3240.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 12x^{4} - 24x^{3} + 36x^{2} + 144x + 184 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 8.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \( x^{2} + 16x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 8 a + 6 + \left(13 a + 10\right)\cdot 17 + \left(16 a + 16\right)\cdot 17^{2} + \left(2 a + 3\right)\cdot 17^{3} + \left(6 a + 1\right)\cdot 17^{4} + \left(16 a + 3\right)\cdot 17^{5} + \left(10 a + 4\right)\cdot 17^{6} + \left(2 a + 2\right)\cdot 17^{7} +O(17^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 a + \left(16 a + 9\right)\cdot 17 + \left(8 a + 7\right)\cdot 17^{2} + \left(15 a + 1\right)\cdot 17^{3} + \left(10 a + 6\right)\cdot 17^{4} + \left(7 a + 15\right)\cdot 17^{5} + \left(5 a + 7\right)\cdot 17^{6} + \left(12 a + 6\right)\cdot 17^{7} +O(17^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 12 a + 5 + 3\cdot 17 + 8 a\cdot 17^{2} + \left(a + 8\right)\cdot 17^{3} + \left(6 a + 1\right)\cdot 17^{4} + \left(9 a + 12\right)\cdot 17^{5} + \left(11 a + 5\right)\cdot 17^{6} + \left(4 a + 13\right)\cdot 17^{7} +O(17^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 13 a + 15 + \left(12 a + 14\right)\cdot 17 + \left(8 a + 13\right)\cdot 17^{2} + \left(a + 1\right)\cdot 17^{3} + 11\cdot 17^{4} + \left(7 a + 8\right)\cdot 17^{5} + \left(16 a + 12\right)\cdot 17^{6} + \left(14 a + 9\right)\cdot 17^{7} +O(17^{8})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 9 a + 14 + \left(3 a + 15\right)\cdot 17 + 2\cdot 17^{2} + \left(14 a + 7\right)\cdot 17^{3} + \left(10 a + 4\right)\cdot 17^{4} + 13\cdot 17^{5} + \left(6 a + 15\right)\cdot 17^{6} + \left(14 a + 10\right)\cdot 17^{7} +O(17^{8})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 4 a + 11 + \left(4 a + 14\right)\cdot 17 + \left(8 a + 9\right)\cdot 17^{2} + \left(15 a + 11\right)\cdot 17^{3} + \left(16 a + 9\right)\cdot 17^{4} + \left(9 a + 15\right)\cdot 17^{5} + 4\cdot 17^{6} + \left(2 a + 8\right)\cdot 17^{7} +O(17^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,2)$
$(1,2,6)(3,5,4)$
$(1,5,2,3,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$3$$2$$(1,3)(2,4)(5,6)$$0$
$1$$3$$(1,2,6)(3,4,5)$$2 \zeta_{3}$
$1$$3$$(1,6,2)(3,5,4)$$-2 \zeta_{3} - 2$
$2$$3$$(1,2,6)(3,5,4)$$-1$
$2$$3$$(1,6,2)$$-\zeta_{3}$
$2$$3$$(1,2,6)$$\zeta_{3} + 1$
$3$$6$$(1,5,2,3,6,4)$$0$
$3$$6$$(1,4,6,3,2,5)$$0$