Basic invariants
Dimension: | $2$ |
Group: | $S_3\times C_3$ |
Conductor: | \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \) |
Artin stem field: | Galois closure of 6.0.419904000.9 |
Galois orbit size: | $2$ |
Smallest permutation container: | $S_3\times C_3$ |
Parity: | odd |
Determinant: | 1.360.6t1.d.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.3240.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} - 12x^{4} - 24x^{3} + 36x^{2} + 144x + 184 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \( x^{2} + 16x + 3 \)
Roots:
$r_{ 1 }$ | $=$ | \( 8 a + 6 + \left(13 a + 10\right)\cdot 17 + \left(16 a + 16\right)\cdot 17^{2} + \left(2 a + 3\right)\cdot 17^{3} + \left(6 a + 1\right)\cdot 17^{4} + \left(16 a + 3\right)\cdot 17^{5} + \left(10 a + 4\right)\cdot 17^{6} + \left(2 a + 2\right)\cdot 17^{7} +O(17^{8})\) |
$r_{ 2 }$ | $=$ | \( 5 a + \left(16 a + 9\right)\cdot 17 + \left(8 a + 7\right)\cdot 17^{2} + \left(15 a + 1\right)\cdot 17^{3} + \left(10 a + 6\right)\cdot 17^{4} + \left(7 a + 15\right)\cdot 17^{5} + \left(5 a + 7\right)\cdot 17^{6} + \left(12 a + 6\right)\cdot 17^{7} +O(17^{8})\) |
$r_{ 3 }$ | $=$ | \( 12 a + 5 + 3\cdot 17 + 8 a\cdot 17^{2} + \left(a + 8\right)\cdot 17^{3} + \left(6 a + 1\right)\cdot 17^{4} + \left(9 a + 12\right)\cdot 17^{5} + \left(11 a + 5\right)\cdot 17^{6} + \left(4 a + 13\right)\cdot 17^{7} +O(17^{8})\) |
$r_{ 4 }$ | $=$ | \( 13 a + 15 + \left(12 a + 14\right)\cdot 17 + \left(8 a + 13\right)\cdot 17^{2} + \left(a + 1\right)\cdot 17^{3} + 11\cdot 17^{4} + \left(7 a + 8\right)\cdot 17^{5} + \left(16 a + 12\right)\cdot 17^{6} + \left(14 a + 9\right)\cdot 17^{7} +O(17^{8})\) |
$r_{ 5 }$ | $=$ | \( 9 a + 14 + \left(3 a + 15\right)\cdot 17 + 2\cdot 17^{2} + \left(14 a + 7\right)\cdot 17^{3} + \left(10 a + 4\right)\cdot 17^{4} + 13\cdot 17^{5} + \left(6 a + 15\right)\cdot 17^{6} + \left(14 a + 10\right)\cdot 17^{7} +O(17^{8})\) |
$r_{ 6 }$ | $=$ | \( 4 a + 11 + \left(4 a + 14\right)\cdot 17 + \left(8 a + 9\right)\cdot 17^{2} + \left(15 a + 11\right)\cdot 17^{3} + \left(16 a + 9\right)\cdot 17^{4} + \left(9 a + 15\right)\cdot 17^{5} + 4\cdot 17^{6} + \left(2 a + 8\right)\cdot 17^{7} +O(17^{8})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$3$ | $2$ | $(1,3)(2,4)(5,6)$ | $0$ | ✓ |
$1$ | $3$ | $(1,2,6)(3,4,5)$ | $2 \zeta_{3}$ | |
$1$ | $3$ | $(1,6,2)(3,5,4)$ | $-2 \zeta_{3} - 2$ | |
$2$ | $3$ | $(1,2,6)(3,5,4)$ | $-1$ | |
$2$ | $3$ | $(1,6,2)$ | $-\zeta_{3}$ | |
$2$ | $3$ | $(1,2,6)$ | $\zeta_{3} + 1$ | |
$3$ | $6$ | $(1,5,2,3,6,4)$ | $0$ | |
$3$ | $6$ | $(1,4,6,3,2,5)$ | $0$ |