L(s) = 1 | + 2-s − 3-s + 4-s − 6-s − 4·7-s + 8-s + 9-s − 12-s − 4·14-s + 16-s + 18-s − 4·19-s + 4·21-s − 24-s + 6·25-s − 27-s − 4·28-s − 4·29-s + 32-s + 36-s − 4·38-s + 16·41-s + 4·42-s − 48-s + 2·49-s + 6·50-s − 8·53-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 0.288·12-s − 1.06·14-s + 1/4·16-s + 0.235·18-s − 0.917·19-s + 0.872·21-s − 0.204·24-s + 6/5·25-s − 0.192·27-s − 0.755·28-s − 0.742·29-s + 0.176·32-s + 1/6·36-s − 0.648·38-s + 2.49·41-s + 0.617·42-s − 0.144·48-s + 2/7·49-s + 0.848·50-s − 1.09·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.722004226747554232785503447987, −7.84137137987603428971278683803, −7.61290840027815430565926852347, −6.88258152399789669587522888774, −6.64130027425973879519373000253, −6.06803346755742853076135280648, −5.90551592739753488456858322419, −5.21870066662744913676894847088, −4.53114633194593558287948869469, −4.22760177787653697393370900481, −3.48448683380402607340751264018, −2.97579797594057402313735117934, −2.39184485111621331058665785058, −1.31937024815301995985138819457, 0,
1.31937024815301995985138819457, 2.39184485111621331058665785058, 2.97579797594057402313735117934, 3.48448683380402607340751264018, 4.22760177787653697393370900481, 4.53114633194593558287948869469, 5.21870066662744913676894847088, 5.90551592739753488456858322419, 6.06803346755742853076135280648, 6.64130027425973879519373000253, 6.88258152399789669587522888774, 7.61290840027815430565926852347, 7.84137137987603428971278683803, 8.722004226747554232785503447987