| L(s) = 1 | + 2·7-s + 4·11-s + 2·19-s + 8·23-s − 3·25-s − 12·29-s + 6·31-s + 6·37-s − 12·41-s + 4·43-s + 12·47-s + 3·49-s + 4·59-s + 8·61-s − 8·67-s + 12·73-s + 8·77-s + 12·79-s + 20·83-s + 12·89-s + 16·97-s − 8·101-s − 2·103-s + 16·107-s − 2·109-s − 8·113-s − 3·121-s + ⋯ |
| L(s) = 1 | + 0.755·7-s + 1.20·11-s + 0.458·19-s + 1.66·23-s − 3/5·25-s − 2.22·29-s + 1.07·31-s + 0.986·37-s − 1.87·41-s + 0.609·43-s + 1.75·47-s + 3/7·49-s + 0.520·59-s + 1.02·61-s − 0.977·67-s + 1.40·73-s + 0.911·77-s + 1.35·79-s + 2.19·83-s + 1.27·89-s + 1.62·97-s − 0.796·101-s − 0.197·103-s + 1.54·107-s − 0.191·109-s − 0.752·113-s − 0.272·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.883159966\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.883159966\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.930652036205161120265365926432, −8.729119403403450663487493329435, −7.975725736994327291797997289621, −7.83672587032887635920019989122, −7.49109259480459555614805427469, −7.04758861008663795749748082928, −6.53998501095229081061482730522, −6.49175830333650530008332078977, −5.64992863100969220083769518933, −5.61545019504507832384418811726, −4.96019921038343193702910704191, −4.78179414320327753104482914099, −4.11487970698589143607449270346, −3.81421960798734821151372032567, −3.42148458654315459055090734582, −2.89173825206231459120671006537, −2.04523566260008101835170603536, −2.00287651010499383647707168627, −1.05974916155509297642056259261, −0.74807549459243729831945013422,
0.74807549459243729831945013422, 1.05974916155509297642056259261, 2.00287651010499383647707168627, 2.04523566260008101835170603536, 2.89173825206231459120671006537, 3.42148458654315459055090734582, 3.81421960798734821151372032567, 4.11487970698589143607449270346, 4.78179414320327753104482914099, 4.96019921038343193702910704191, 5.61545019504507832384418811726, 5.64992863100969220083769518933, 6.49175830333650530008332078977, 6.53998501095229081061482730522, 7.04758861008663795749748082928, 7.49109259480459555614805427469, 7.83672587032887635920019989122, 7.975725736994327291797997289621, 8.729119403403450663487493329435, 8.930652036205161120265365926432