L(s) = 1 | + 2-s + 4-s − 6·7-s + 8-s − 9-s − 6·14-s + 16-s + 3·17-s − 18-s + 3·23-s − 7·25-s − 6·28-s + 9·31-s + 32-s + 3·34-s − 36-s + 7·41-s + 3·46-s − 3·47-s + 13·49-s − 7·50-s − 6·56-s + 9·62-s + 6·63-s + 64-s + 3·68-s − 10·71-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 2.26·7-s + 0.353·8-s − 1/3·9-s − 1.60·14-s + 1/4·16-s + 0.727·17-s − 0.235·18-s + 0.625·23-s − 7/5·25-s − 1.13·28-s + 1.61·31-s + 0.176·32-s + 0.514·34-s − 1/6·36-s + 1.09·41-s + 0.442·46-s − 0.437·47-s + 13/7·49-s − 0.989·50-s − 0.801·56-s + 1.14·62-s + 0.755·63-s + 1/8·64-s + 0.363·68-s − 1.18·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2944 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2944 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8936362456\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8936362456\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.82689379624976692935685457416, −12.47082892348308743685163307187, −11.78360452102593778329276783241, −11.24783149837249233207705572275, −10.21693082504046408147657388629, −9.926115118339504026757819192086, −9.356657181464702211244177641224, −8.481057393643706361731588675868, −7.56256187415924558038549191686, −6.85258559439377508167524060896, −6.10715892759699976006896801110, −5.77186601537372124347663154498, −4.47999875102112923550436568355, −3.44337038071032074498714277783, −2.82824021742699524660793330370,
2.82824021742699524660793330370, 3.44337038071032074498714277783, 4.47999875102112923550436568355, 5.77186601537372124347663154498, 6.10715892759699976006896801110, 6.85258559439377508167524060896, 7.56256187415924558038549191686, 8.481057393643706361731588675868, 9.356657181464702211244177641224, 9.926115118339504026757819192086, 10.21693082504046408147657388629, 11.24783149837249233207705572275, 11.78360452102593778329276783241, 12.47082892348308743685163307187, 12.82689379624976692935685457416