L(s) = 1 | + 3·4-s + 2·5-s + 5·9-s + 5·16-s − 12·19-s + 6·20-s − 25-s − 14·29-s + 4·31-s + 15·36-s + 10·41-s + 10·45-s − 20·59-s + 14·61-s + 3·64-s − 4·71-s − 36·76-s + 4·79-s + 10·80-s + 16·81-s − 18·89-s − 24·95-s − 3·100-s + 18·101-s − 10·109-s − 42·116-s − 22·121-s + ⋯ |
L(s) = 1 | + 3/2·4-s + 0.894·5-s + 5/3·9-s + 5/4·16-s − 2.75·19-s + 1.34·20-s − 1/5·25-s − 2.59·29-s + 0.718·31-s + 5/2·36-s + 1.56·41-s + 1.49·45-s − 2.60·59-s + 1.79·61-s + 3/8·64-s − 0.474·71-s − 4.12·76-s + 0.450·79-s + 1.11·80-s + 16/9·81-s − 1.90·89-s − 2.46·95-s − 0.299·100-s + 1.79·101-s − 0.957·109-s − 3.89·116-s − 2·121-s + ⋯ |
Λ(s)=(=(60025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(60025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
60025
= 52⋅74
|
Sign: |
1
|
Analytic conductor: |
3.82724 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 60025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.443015397 |
L(21) |
≈ |
2.443015397 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | C2 | 1−2T+pT2 |
| 7 | | 1 |
good | 2 | C22 | 1−3T2+p2T4 |
| 3 | C22 | 1−5T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+6T+pT2)2 |
| 23 | C22 | 1−37T2+p2T4 |
| 29 | C2 | (1+7T+pT2)2 |
| 31 | C2 | (1−2T+pT2)2 |
| 37 | C22 | 1−10T2+p2T4 |
| 41 | C2 | (1−5T+pT2)2 |
| 43 | C22 | 1−37T2+p2T4 |
| 47 | C2 | (1−pT2)2 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C2 | (1+10T+pT2)2 |
| 61 | C2 | (1−7T+pT2)2 |
| 67 | C22 | 1−109T2+p2T4 |
| 71 | C2 | (1+2T+pT2)2 |
| 73 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 79 | C2 | (1−2T+pT2)2 |
| 83 | C22 | 1−45T2+p2T4 |
| 89 | C2 | (1+9T+pT2)2 |
| 97 | C22 | 1+62T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.46951940122934231732586921988, −11.84681627409977531747499048886, −11.13252314025887071708034118484, −10.98756286558056088332578216807, −10.32375677978690018736264978442, −10.25327295647993626477769852673, −9.351854607884083566221417858624, −9.271730083406293209770252837771, −8.315789301112807317702033567314, −7.73218485914141313641570698096, −7.29763084938530033112741735749, −6.80122903032974038134729394574, −6.21699066979898812751951526873, −6.06457335607048116366724981930, −5.22034242659032869267184379667, −4.22970151780495777256668162325, −3.99128029617419054937583513285, −2.75196144789082061150707603900, −1.96757377625627144750002423327, −1.71885448512894583614551319232,
1.71885448512894583614551319232, 1.96757377625627144750002423327, 2.75196144789082061150707603900, 3.99128029617419054937583513285, 4.22970151780495777256668162325, 5.22034242659032869267184379667, 6.06457335607048116366724981930, 6.21699066979898812751951526873, 6.80122903032974038134729394574, 7.29763084938530033112741735749, 7.73218485914141313641570698096, 8.315789301112807317702033567314, 9.271730083406293209770252837771, 9.351854607884083566221417858624, 10.25327295647993626477769852673, 10.32375677978690018736264978442, 10.98756286558056088332578216807, 11.13252314025887071708034118484, 11.84681627409977531747499048886, 12.46951940122934231732586921988