L(s) = 1 | + 2·3-s − 4-s + 6·5-s − 3·9-s + 6·11-s − 2·12-s + 12·15-s − 3·16-s − 6·17-s − 2·19-s − 6·20-s + 17·25-s − 14·27-s + 12·33-s + 3·36-s + 4·37-s − 2·43-s − 6·44-s − 18·45-s − 6·48-s + 14·49-s − 12·51-s + 12·53-s + 36·55-s − 4·57-s − 12·60-s + 10·61-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1/2·4-s + 2.68·5-s − 9-s + 1.80·11-s − 0.577·12-s + 3.09·15-s − 3/4·16-s − 1.45·17-s − 0.458·19-s − 1.34·20-s + 17/5·25-s − 2.69·27-s + 2.08·33-s + 1/2·36-s + 0.657·37-s − 0.304·43-s − 0.904·44-s − 2.68·45-s − 0.866·48-s + 2·49-s − 1.68·51-s + 1.64·53-s + 4.85·55-s − 0.529·57-s − 1.54·60-s + 1.28·61-s + ⋯ |
Λ(s)=(=(52441s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(52441s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
52441
= 2292
|
Sign: |
1
|
Analytic conductor: |
3.34368 |
Root analytic conductor: |
1.35224 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 52441, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.549581091 |
L(21) |
≈ |
2.549581091 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 229 | C2 | 1−14T+pT2 |
good | 2 | C22 | 1+T2+p2T4 |
| 3 | C2 | (1−T+pT2)2 |
| 5 | C2 | (1−3T+pT2)2 |
| 7 | C2 | (1−pT2)2 |
| 11 | C2 | (1−3T+pT2)2 |
| 13 | C2 | (1−pT2)2 |
| 17 | C2 | (1+3T+pT2)2 |
| 19 | C2 | (1+T+pT2)2 |
| 23 | C22 | 1−26T2+p2T4 |
| 29 | C22 | 1−38T2+p2T4 |
| 31 | C2 | (1−pT2)2 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 43 | C2 | (1+T+pT2)2 |
| 47 | C22 | 1−14T2+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C22 | 1−38T2+p2T4 |
| 61 | C2 | (1−5T+pT2)2 |
| 67 | C22 | 1+46T2+p2T4 |
| 71 | C2 | (1+15T+pT2)2 |
| 73 | C22 | 1+34T2+p2T4 |
| 79 | C22 | 1+22T2+p2T4 |
| 83 | C2 | (1+9T+pT2)2 |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1+7T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.14580004509351118819641553580, −11.75485079284358130848965550474, −11.61430493196621781706902305185, −10.99769158155824883235202256723, −10.20704899738732125371168016271, −9.933228883600645345117312716392, −9.288995754727251390007447684528, −8.998106452521941953152706182178, −8.768961470526460026351817099329, −8.587851934459013834761684572790, −7.41739122861685143280509277723, −6.71778066430661336888582716183, −6.29205951881109080234144756635, −5.78640405170751959347105161981, −5.42927634164617286025699613855, −4.38492488245376512643072179509, −3.88261708380527167211809567495, −2.66907075111205383917085810778, −2.37938663941908880657930341002, −1.65730355152551961546014863016,
1.65730355152551961546014863016, 2.37938663941908880657930341002, 2.66907075111205383917085810778, 3.88261708380527167211809567495, 4.38492488245376512643072179509, 5.42927634164617286025699613855, 5.78640405170751959347105161981, 6.29205951881109080234144756635, 6.71778066430661336888582716183, 7.41739122861685143280509277723, 8.587851934459013834761684572790, 8.768961470526460026351817099329, 8.998106452521941953152706182178, 9.288995754727251390007447684528, 9.933228883600645345117312716392, 10.20704899738732125371168016271, 10.99769158155824883235202256723, 11.61430493196621781706902305185, 11.75485079284358130848965550474, 13.14580004509351118819641553580