Base field \(\Q(\sqrt{229}) \)
Generator \(w\), with minimal polynomial \(x^{2} - x - 57\); narrow class number \(3\) and class number \(3\).
Form
Weight: | $[2, 2]$ |
Level: | $[1, 1, 1]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $27$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
3 | $[3, 3, w]$ | $\phantom{-}1$ |
3 | $[3, 3, w + 2]$ | $\phantom{-}1$ |
4 | $[4, 2, 2]$ | $-1$ |
5 | $[5, 5, w + 1]$ | $\phantom{-}3$ |
5 | $[5, 5, w + 3]$ | $\phantom{-}3$ |
11 | $[11, 11, w + 1]$ | $\phantom{-}3$ |
11 | $[11, 11, w + 9]$ | $\phantom{-}3$ |
17 | $[17, 17, w + 2]$ | $-3$ |
17 | $[17, 17, w + 14]$ | $-3$ |
19 | $[19, 19, w]$ | $-1$ |
19 | $[19, 19, w + 18]$ | $-1$ |
37 | $[37, 37, -w - 4]$ | $\phantom{-}2$ |
37 | $[37, 37, w - 5]$ | $\phantom{-}2$ |
43 | $[43, 43, w + 16]$ | $-1$ |
43 | $[43, 43, w + 26]$ | $-1$ |
49 | $[49, 7, -7]$ | $\phantom{-}14$ |
53 | $[53, 53, -w - 10]$ | $\phantom{-}6$ |
53 | $[53, 53, w - 11]$ | $\phantom{-}6$ |
61 | $[61, 61, w + 15]$ | $\phantom{-}5$ |
61 | $[61, 61, w + 45]$ | $\phantom{-}5$ |
Atkin-Lehner eigenvalues
This form has no Atkin-Lehner eigenvalues since the level is \((1)\).