Properties

Label 4-2178e2-1.1-c2e2-0-3
Degree $4$
Conductor $4743684$
Sign $1$
Analytic cond. $3521.97$
Root an. cond. $7.70364$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 4·5-s + 4·16-s + 8·20-s − 40·23-s − 38·25-s + 24·31-s + 60·37-s − 88·47-s + 98·49-s + 112·53-s + 160·59-s − 8·64-s + 160·67-s − 120·71-s − 16·80-s − 160·89-s + 80·92-s + 76·100-s + 280·103-s − 420·113-s + 160·115-s − 48·124-s + 268·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1/2·4-s − 4/5·5-s + 1/4·16-s + 2/5·20-s − 1.73·23-s − 1.51·25-s + 0.774·31-s + 1.62·37-s − 1.87·47-s + 2·49-s + 2.11·53-s + 2.71·59-s − 1/8·64-s + 2.38·67-s − 1.69·71-s − 1/5·80-s − 1.79·89-s + 0.869·92-s + 0.759·100-s + 2.71·103-s − 3.71·113-s + 1.39·115-s − 0.387·124-s + 2.14·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4743684\)    =    \(2^{2} \cdot 3^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(3521.97\)
Root analytic conductor: \(7.70364\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4743684,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.371493232\)
\(L(\frac12)\) \(\approx\) \(1.371493232\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3 \( 1 \)
11 \( 1 \)
good5$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
13$C_2^2$ \( 1 - 288 T^{2} + p^{4} T^{4} \)
17$C_2^2$ \( 1 - 480 T^{2} + p^{4} T^{4} \)
19$C_2^2$ \( 1 - 690 T^{2} + p^{4} T^{4} \)
23$C_2$ \( ( 1 + 20 T + p^{2} T^{2} )^{2} \)
29$C_2^2$ \( 1 - 1632 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 12 T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 30 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 2912 T^{2} + p^{4} T^{4} \)
43$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
47$C_2$ \( ( 1 + 44 T + p^{2} T^{2} )^{2} \)
53$C_2$ \( ( 1 - 56 T + p^{2} T^{2} )^{2} \)
59$C_2$ \( ( 1 - 80 T + p^{2} T^{2} )^{2} \)
61$C_2^2$ \( 1 - 6560 T^{2} + p^{4} T^{4} \)
67$C_2$ \( ( 1 - 80 T + p^{2} T^{2} )^{2} \)
71$C_2$ \( ( 1 + 60 T + p^{2} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 4608 T^{2} + p^{4} T^{4} \)
79$C_2^2$ \( 1 - 8610 T^{2} + p^{4} T^{4} \)
83$C_2^2$ \( 1 - 12210 T^{2} + p^{4} T^{4} \)
89$C_2$ \( ( 1 + 80 T + p^{2} T^{2} )^{2} \)
97$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.969818554140440162278916876435, −8.625593433711442421106288728213, −8.158786690531956967606404472334, −8.066320907792031555105893492492, −7.67193078996614117000153011086, −7.16874005911068688823828189274, −6.85515526324869800403421900367, −6.21971252164068912269715588324, −5.98822931140637687662345616491, −5.36661107258802145237724757859, −5.29846107645755582425162532913, −4.32972824216435895872389043960, −4.25606322571319941957927212094, −3.82126758632687554473736553103, −3.57140300776507165156957576388, −2.62241548278392226037990282782, −2.39444376980377885464837010925, −1.71002423345057271733279239564, −0.863512086040662833125563929160, −0.37707185539982901487170741712, 0.37707185539982901487170741712, 0.863512086040662833125563929160, 1.71002423345057271733279239564, 2.39444376980377885464837010925, 2.62241548278392226037990282782, 3.57140300776507165156957576388, 3.82126758632687554473736553103, 4.25606322571319941957927212094, 4.32972824216435895872389043960, 5.29846107645755582425162532913, 5.36661107258802145237724757859, 5.98822931140637687662345616491, 6.21971252164068912269715588324, 6.85515526324869800403421900367, 7.16874005911068688823828189274, 7.67193078996614117000153011086, 8.066320907792031555105893492492, 8.158786690531956967606404472334, 8.625593433711442421106288728213, 8.969818554140440162278916876435

Graph of the $Z$-function along the critical line