Properties

Label 2178.3.d.b.1693.2
Level $2178$
Weight $3$
Character 2178.1693
Analytic conductor $59.346$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2178,3,Mod(1693,2178)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2178, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2178.1693"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2178.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.3462015777\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1693.2
Root \(1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 2178.1693
Dual form 2178.3.d.b.1693.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} -2.00000 q^{5} -2.82843i q^{8} -2.82843i q^{10} -7.07107i q^{13} +4.00000 q^{16} -9.89949i q^{17} +5.65685i q^{19} +4.00000 q^{20} -20.0000 q^{23} -21.0000 q^{25} +10.0000 q^{26} +7.07107i q^{29} +12.0000 q^{31} +5.65685i q^{32} +14.0000 q^{34} +30.0000 q^{37} -8.00000 q^{38} +5.65685i q^{40} +21.2132i q^{41} -28.2843i q^{46} -44.0000 q^{47} +49.0000 q^{49} -29.6985i q^{50} +14.1421i q^{52} +56.0000 q^{53} -10.0000 q^{58} +80.0000 q^{59} +29.6985i q^{61} +16.9706i q^{62} -8.00000 q^{64} +14.1421i q^{65} +80.0000 q^{67} +19.7990i q^{68} -60.0000 q^{71} +77.7817i q^{73} +42.4264i q^{74} -11.3137i q^{76} -62.2254i q^{79} -8.00000 q^{80} -30.0000 q^{82} -39.5980i q^{83} +19.7990i q^{85} -80.0000 q^{89} +40.0000 q^{92} -62.2254i q^{94} -11.3137i q^{95} +69.2965i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} - 4 q^{5} + 8 q^{16} + 8 q^{20} - 40 q^{23} - 42 q^{25} + 20 q^{26} + 24 q^{31} + 28 q^{34} + 60 q^{37} - 16 q^{38} - 88 q^{47} + 98 q^{49} + 112 q^{53} - 20 q^{58} + 160 q^{59} - 16 q^{64}+ \cdots + 80 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2178\mathbb{Z}\right)^\times\).

\(n\) \(1333\) \(1937\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) −2.00000 −0.400000 −0.200000 0.979796i \(-0.564094\pi\)
−0.200000 + 0.979796i \(0.564094\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) − 2.82843i − 0.353553i
\(9\) 0 0
\(10\) − 2.82843i − 0.282843i
\(11\) 0 0
\(12\) 0 0
\(13\) − 7.07107i − 0.543928i −0.962307 0.271964i \(-0.912327\pi\)
0.962307 0.271964i \(-0.0876732\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 9.89949i − 0.582323i −0.956674 0.291162i \(-0.905958\pi\)
0.956674 0.291162i \(-0.0940417\pi\)
\(18\) 0 0
\(19\) 5.65685i 0.297729i 0.988858 + 0.148865i \(0.0475619\pi\)
−0.988858 + 0.148865i \(0.952438\pi\)
\(20\) 4.00000 0.200000
\(21\) 0 0
\(22\) 0 0
\(23\) −20.0000 −0.869565 −0.434783 0.900535i \(-0.643175\pi\)
−0.434783 + 0.900535i \(0.643175\pi\)
\(24\) 0 0
\(25\) −21.0000 −0.840000
\(26\) 10.0000 0.384615
\(27\) 0 0
\(28\) 0 0
\(29\) 7.07107i 0.243830i 0.992541 + 0.121915i \(0.0389035\pi\)
−0.992541 + 0.121915i \(0.961096\pi\)
\(30\) 0 0
\(31\) 12.0000 0.387097 0.193548 0.981091i \(-0.438000\pi\)
0.193548 + 0.981091i \(0.438000\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 14.0000 0.411765
\(35\) 0 0
\(36\) 0 0
\(37\) 30.0000 0.810811 0.405405 0.914137i \(-0.367130\pi\)
0.405405 + 0.914137i \(0.367130\pi\)
\(38\) −8.00000 −0.210526
\(39\) 0 0
\(40\) 5.65685i 0.141421i
\(41\) 21.2132i 0.517395i 0.965958 + 0.258698i \(0.0832933\pi\)
−0.965958 + 0.258698i \(0.916707\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) − 28.2843i − 0.614875i
\(47\) −44.0000 −0.936170 −0.468085 0.883683i \(-0.655056\pi\)
−0.468085 + 0.883683i \(0.655056\pi\)
\(48\) 0 0
\(49\) 49.0000 1.00000
\(50\) − 29.6985i − 0.593970i
\(51\) 0 0
\(52\) 14.1421i 0.271964i
\(53\) 56.0000 1.05660 0.528302 0.849057i \(-0.322829\pi\)
0.528302 + 0.849057i \(0.322829\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −10.0000 −0.172414
\(59\) 80.0000 1.35593 0.677966 0.735093i \(-0.262862\pi\)
0.677966 + 0.735093i \(0.262862\pi\)
\(60\) 0 0
\(61\) 29.6985i 0.486860i 0.969918 + 0.243430i \(0.0782727\pi\)
−0.969918 + 0.243430i \(0.921727\pi\)
\(62\) 16.9706i 0.273719i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 14.1421i 0.217571i
\(66\) 0 0
\(67\) 80.0000 1.19403 0.597015 0.802230i \(-0.296353\pi\)
0.597015 + 0.802230i \(0.296353\pi\)
\(68\) 19.7990i 0.291162i
\(69\) 0 0
\(70\) 0 0
\(71\) −60.0000 −0.845070 −0.422535 0.906347i \(-0.638860\pi\)
−0.422535 + 0.906347i \(0.638860\pi\)
\(72\) 0 0
\(73\) 77.7817i 1.06550i 0.846272 + 0.532752i \(0.178842\pi\)
−0.846272 + 0.532752i \(0.821158\pi\)
\(74\) 42.4264i 0.573330i
\(75\) 0 0
\(76\) − 11.3137i − 0.148865i
\(77\) 0 0
\(78\) 0 0
\(79\) − 62.2254i − 0.787663i −0.919183 0.393832i \(-0.871149\pi\)
0.919183 0.393832i \(-0.128851\pi\)
\(80\) −8.00000 −0.100000
\(81\) 0 0
\(82\) −30.0000 −0.365854
\(83\) − 39.5980i − 0.477084i −0.971132 0.238542i \(-0.923331\pi\)
0.971132 0.238542i \(-0.0766695\pi\)
\(84\) 0 0
\(85\) 19.7990i 0.232929i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −80.0000 −0.898876 −0.449438 0.893311i \(-0.648376\pi\)
−0.449438 + 0.893311i \(0.648376\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 40.0000 0.434783
\(93\) 0 0
\(94\) − 62.2254i − 0.661972i
\(95\) − 11.3137i − 0.119092i
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 69.2965i 0.707107i
\(99\) 0 0
\(100\) 42.0000 0.420000
\(101\) 162.635i 1.61024i 0.593110 + 0.805122i \(0.297900\pi\)
−0.593110 + 0.805122i \(0.702100\pi\)
\(102\) 0 0
\(103\) 140.000 1.35922 0.679612 0.733572i \(-0.262148\pi\)
0.679612 + 0.733572i \(0.262148\pi\)
\(104\) −20.0000 −0.192308
\(105\) 0 0
\(106\) 79.1960i 0.747132i
\(107\) 152.735i 1.42743i 0.700436 + 0.713715i \(0.252989\pi\)
−0.700436 + 0.713715i \(0.747011\pi\)
\(108\) 0 0
\(109\) 15.5563i 0.142719i 0.997451 + 0.0713594i \(0.0227337\pi\)
−0.997451 + 0.0713594i \(0.977266\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −210.000 −1.85841 −0.929204 0.369568i \(-0.879506\pi\)
−0.929204 + 0.369568i \(0.879506\pi\)
\(114\) 0 0
\(115\) 40.0000 0.347826
\(116\) − 14.1421i − 0.121915i
\(117\) 0 0
\(118\) 113.137i 0.958789i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) −42.0000 −0.344262
\(123\) 0 0
\(124\) −24.0000 −0.193548
\(125\) 92.0000 0.736000
\(126\) 0 0
\(127\) 169.706i 1.33626i 0.744042 + 0.668132i \(0.232906\pi\)
−0.744042 + 0.668132i \(0.767094\pi\)
\(128\) − 11.3137i − 0.0883883i
\(129\) 0 0
\(130\) −20.0000 −0.153846
\(131\) 56.5685i 0.431821i 0.976413 + 0.215910i \(0.0692719\pi\)
−0.976413 + 0.215910i \(0.930728\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 113.137i 0.844307i
\(135\) 0 0
\(136\) −28.0000 −0.205882
\(137\) −126.000 −0.919708 −0.459854 0.887995i \(-0.652098\pi\)
−0.459854 + 0.887995i \(0.652098\pi\)
\(138\) 0 0
\(139\) 79.1960i 0.569755i 0.958564 + 0.284878i \(0.0919529\pi\)
−0.958564 + 0.284878i \(0.908047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 84.8528i − 0.597555i
\(143\) 0 0
\(144\) 0 0
\(145\) − 14.1421i − 0.0975320i
\(146\) −110.000 −0.753425
\(147\) 0 0
\(148\) −60.0000 −0.405405
\(149\) − 63.6396i − 0.427111i −0.976931 0.213556i \(-0.931496\pi\)
0.976931 0.213556i \(-0.0685045\pi\)
\(150\) 0 0
\(151\) − 118.794i − 0.786715i −0.919386 0.393357i \(-0.871314\pi\)
0.919386 0.393357i \(-0.128686\pi\)
\(152\) 16.0000 0.105263
\(153\) 0 0
\(154\) 0 0
\(155\) −24.0000 −0.154839
\(156\) 0 0
\(157\) 40.0000 0.254777 0.127389 0.991853i \(-0.459340\pi\)
0.127389 + 0.991853i \(0.459340\pi\)
\(158\) 88.0000 0.556962
\(159\) 0 0
\(160\) − 11.3137i − 0.0707107i
\(161\) 0 0
\(162\) 0 0
\(163\) 40.0000 0.245399 0.122699 0.992444i \(-0.460845\pi\)
0.122699 + 0.992444i \(0.460845\pi\)
\(164\) − 42.4264i − 0.258698i
\(165\) 0 0
\(166\) 56.0000 0.337349
\(167\) 265.872i 1.59205i 0.605265 + 0.796024i \(0.293067\pi\)
−0.605265 + 0.796024i \(0.706933\pi\)
\(168\) 0 0
\(169\) 119.000 0.704142
\(170\) −28.0000 −0.164706
\(171\) 0 0
\(172\) 0 0
\(173\) 244.659i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) − 113.137i − 0.635602i
\(179\) −320.000 −1.78771 −0.893855 0.448357i \(-0.852009\pi\)
−0.893855 + 0.448357i \(0.852009\pi\)
\(180\) 0 0
\(181\) 130.000 0.718232 0.359116 0.933293i \(-0.383078\pi\)
0.359116 + 0.933293i \(0.383078\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 56.5685i 0.307438i
\(185\) −60.0000 −0.324324
\(186\) 0 0
\(187\) 0 0
\(188\) 88.0000 0.468085
\(189\) 0 0
\(190\) 16.0000 0.0842105
\(191\) 260.000 1.36126 0.680628 0.732629i \(-0.261707\pi\)
0.680628 + 0.732629i \(0.261707\pi\)
\(192\) 0 0
\(193\) 148.492i 0.769391i 0.923044 + 0.384695i \(0.125694\pi\)
−0.923044 + 0.384695i \(0.874306\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −98.0000 −0.500000
\(197\) 222.032i 1.12706i 0.826094 + 0.563532i \(0.190558\pi\)
−0.826094 + 0.563532i \(0.809442\pi\)
\(198\) 0 0
\(199\) −140.000 −0.703518 −0.351759 0.936091i \(-0.614416\pi\)
−0.351759 + 0.936091i \(0.614416\pi\)
\(200\) 59.3970i 0.296985i
\(201\) 0 0
\(202\) −230.000 −1.13861
\(203\) 0 0
\(204\) 0 0
\(205\) − 42.4264i − 0.206958i
\(206\) 197.990i 0.961116i
\(207\) 0 0
\(208\) − 28.2843i − 0.135982i
\(209\) 0 0
\(210\) 0 0
\(211\) 118.794i 0.563004i 0.959561 + 0.281502i \(0.0908327\pi\)
−0.959561 + 0.281502i \(0.909167\pi\)
\(212\) −112.000 −0.528302
\(213\) 0 0
\(214\) −216.000 −1.00935
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −22.0000 −0.100917
\(219\) 0 0
\(220\) 0 0
\(221\) −70.0000 −0.316742
\(222\) 0 0
\(223\) −140.000 −0.627803 −0.313901 0.949456i \(-0.601636\pi\)
−0.313901 + 0.949456i \(0.601636\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) − 296.985i − 1.31409i
\(227\) 124.451i 0.548241i 0.961695 + 0.274121i \(0.0883868\pi\)
−0.961695 + 0.274121i \(0.911613\pi\)
\(228\) 0 0
\(229\) 190.000 0.829694 0.414847 0.909891i \(-0.363835\pi\)
0.414847 + 0.909891i \(0.363835\pi\)
\(230\) 56.5685i 0.245950i
\(231\) 0 0
\(232\) 20.0000 0.0862069
\(233\) 306.884i 1.31710i 0.752537 + 0.658550i \(0.228830\pi\)
−0.752537 + 0.658550i \(0.771170\pi\)
\(234\) 0 0
\(235\) 88.0000 0.374468
\(236\) −160.000 −0.677966
\(237\) 0 0
\(238\) 0 0
\(239\) 254.558i 1.06510i 0.846399 + 0.532549i \(0.178766\pi\)
−0.846399 + 0.532549i \(0.821234\pi\)
\(240\) 0 0
\(241\) 100.409i 0.416636i 0.978061 + 0.208318i \(0.0667988\pi\)
−0.978061 + 0.208318i \(0.933201\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) − 59.3970i − 0.243430i
\(245\) −98.0000 −0.400000
\(246\) 0 0
\(247\) 40.0000 0.161943
\(248\) − 33.9411i − 0.136859i
\(249\) 0 0
\(250\) 130.108i 0.520431i
\(251\) 160.000 0.637450 0.318725 0.947847i \(-0.396745\pi\)
0.318725 + 0.947847i \(0.396745\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −240.000 −0.944882
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 240.000 0.933852 0.466926 0.884296i \(-0.345361\pi\)
0.466926 + 0.884296i \(0.345361\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) − 28.2843i − 0.108786i
\(261\) 0 0
\(262\) −80.0000 −0.305344
\(263\) 67.8823i 0.258107i 0.991638 + 0.129054i \(0.0411940\pi\)
−0.991638 + 0.129054i \(0.958806\pi\)
\(264\) 0 0
\(265\) −112.000 −0.422642
\(266\) 0 0
\(267\) 0 0
\(268\) −160.000 −0.597015
\(269\) −280.000 −1.04089 −0.520446 0.853895i \(-0.674234\pi\)
−0.520446 + 0.853895i \(0.674234\pi\)
\(270\) 0 0
\(271\) − 401.637i − 1.48205i −0.671475 0.741027i \(-0.734339\pi\)
0.671475 0.741027i \(-0.265661\pi\)
\(272\) − 39.5980i − 0.145581i
\(273\) 0 0
\(274\) − 178.191i − 0.650332i
\(275\) 0 0
\(276\) 0 0
\(277\) 346.482i 1.25084i 0.780289 + 0.625419i \(0.215072\pi\)
−0.780289 + 0.625419i \(0.784928\pi\)
\(278\) −112.000 −0.402878
\(279\) 0 0
\(280\) 0 0
\(281\) − 190.919i − 0.679426i −0.940529 0.339713i \(-0.889670\pi\)
0.940529 0.339713i \(-0.110330\pi\)
\(282\) 0 0
\(283\) − 367.696i − 1.29928i −0.760243 0.649639i \(-0.774920\pi\)
0.760243 0.649639i \(-0.225080\pi\)
\(284\) 120.000 0.422535
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 191.000 0.660900
\(290\) 20.0000 0.0689655
\(291\) 0 0
\(292\) − 155.563i − 0.532752i
\(293\) − 287.085i − 0.979813i −0.871775 0.489907i \(-0.837031\pi\)
0.871775 0.489907i \(-0.162969\pi\)
\(294\) 0 0
\(295\) −160.000 −0.542373
\(296\) − 84.8528i − 0.286665i
\(297\) 0 0
\(298\) 90.0000 0.302013
\(299\) 141.421i 0.472981i
\(300\) 0 0
\(301\) 0 0
\(302\) 168.000 0.556291
\(303\) 0 0
\(304\) 22.6274i 0.0744323i
\(305\) − 59.3970i − 0.194744i
\(306\) 0 0
\(307\) 509.117i 1.65836i 0.558981 + 0.829181i \(0.311193\pi\)
−0.558981 + 0.829181i \(0.688807\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) − 33.9411i − 0.109488i
\(311\) −140.000 −0.450161 −0.225080 0.974340i \(-0.572264\pi\)
−0.225080 + 0.974340i \(0.572264\pi\)
\(312\) 0 0
\(313\) 350.000 1.11821 0.559105 0.829097i \(-0.311145\pi\)
0.559105 + 0.829097i \(0.311145\pi\)
\(314\) 56.5685i 0.180155i
\(315\) 0 0
\(316\) 124.451i 0.393832i
\(317\) 50.0000 0.157729 0.0788644 0.996885i \(-0.474871\pi\)
0.0788644 + 0.996885i \(0.474871\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 16.0000 0.0500000
\(321\) 0 0
\(322\) 0 0
\(323\) 56.0000 0.173375
\(324\) 0 0
\(325\) 148.492i 0.456900i
\(326\) 56.5685i 0.173523i
\(327\) 0 0
\(328\) 60.0000 0.182927
\(329\) 0 0
\(330\) 0 0
\(331\) −280.000 −0.845921 −0.422961 0.906148i \(-0.639009\pi\)
−0.422961 + 0.906148i \(0.639009\pi\)
\(332\) 79.1960i 0.238542i
\(333\) 0 0
\(334\) −376.000 −1.12575
\(335\) −160.000 −0.477612
\(336\) 0 0
\(337\) − 318.198i − 0.944208i −0.881543 0.472104i \(-0.843495\pi\)
0.881543 0.472104i \(-0.156505\pi\)
\(338\) 168.291i 0.497904i
\(339\) 0 0
\(340\) − 39.5980i − 0.116465i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −346.000 −1.00000
\(347\) − 356.382i − 1.02704i −0.858079 0.513518i \(-0.828342\pi\)
0.858079 0.513518i \(-0.171658\pi\)
\(348\) 0 0
\(349\) − 606.698i − 1.73839i −0.494471 0.869194i \(-0.664638\pi\)
0.494471 0.869194i \(-0.335362\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −256.000 −0.725212 −0.362606 0.931942i \(-0.618113\pi\)
−0.362606 + 0.931942i \(0.618113\pi\)
\(354\) 0 0
\(355\) 120.000 0.338028
\(356\) 160.000 0.449438
\(357\) 0 0
\(358\) − 452.548i − 1.26410i
\(359\) 395.980i 1.10301i 0.834172 + 0.551504i \(0.185946\pi\)
−0.834172 + 0.551504i \(0.814054\pi\)
\(360\) 0 0
\(361\) 329.000 0.911357
\(362\) 183.848i 0.507867i
\(363\) 0 0
\(364\) 0 0
\(365\) − 155.563i − 0.426201i
\(366\) 0 0
\(367\) 100.000 0.272480 0.136240 0.990676i \(-0.456498\pi\)
0.136240 + 0.990676i \(0.456498\pi\)
\(368\) −80.0000 −0.217391
\(369\) 0 0
\(370\) − 84.8528i − 0.229332i
\(371\) 0 0
\(372\) 0 0
\(373\) − 106.066i − 0.284359i −0.989841 0.142180i \(-0.954589\pi\)
0.989841 0.142180i \(-0.0454111\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 124.451i 0.330986i
\(377\) 50.0000 0.132626
\(378\) 0 0
\(379\) −8.00000 −0.0211082 −0.0105541 0.999944i \(-0.503360\pi\)
−0.0105541 + 0.999944i \(0.503360\pi\)
\(380\) 22.6274i 0.0595458i
\(381\) 0 0
\(382\) 367.696i 0.962554i
\(383\) 116.000 0.302872 0.151436 0.988467i \(-0.451610\pi\)
0.151436 + 0.988467i \(0.451610\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −210.000 −0.544041
\(387\) 0 0
\(388\) 0 0
\(389\) 30.0000 0.0771208 0.0385604 0.999256i \(-0.487723\pi\)
0.0385604 + 0.999256i \(0.487723\pi\)
\(390\) 0 0
\(391\) 197.990i 0.506368i
\(392\) − 138.593i − 0.353553i
\(393\) 0 0
\(394\) −314.000 −0.796954
\(395\) 124.451i 0.315065i
\(396\) 0 0
\(397\) −280.000 −0.705290 −0.352645 0.935757i \(-0.614718\pi\)
−0.352645 + 0.935757i \(0.614718\pi\)
\(398\) − 197.990i − 0.497462i
\(399\) 0 0
\(400\) −84.0000 −0.210000
\(401\) 350.000 0.872818 0.436409 0.899748i \(-0.356250\pi\)
0.436409 + 0.899748i \(0.356250\pi\)
\(402\) 0 0
\(403\) − 84.8528i − 0.210553i
\(404\) − 325.269i − 0.805122i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 521.845i 1.27590i 0.770076 + 0.637952i \(0.220218\pi\)
−0.770076 + 0.637952i \(0.779782\pi\)
\(410\) 60.0000 0.146341
\(411\) 0 0
\(412\) −280.000 −0.679612
\(413\) 0 0
\(414\) 0 0
\(415\) 79.1960i 0.190834i
\(416\) 40.0000 0.0961538
\(417\) 0 0
\(418\) 0 0
\(419\) 160.000 0.381862 0.190931 0.981604i \(-0.438849\pi\)
0.190931 + 0.981604i \(0.438849\pi\)
\(420\) 0 0
\(421\) 8.00000 0.0190024 0.00950119 0.999955i \(-0.496976\pi\)
0.00950119 + 0.999955i \(0.496976\pi\)
\(422\) −168.000 −0.398104
\(423\) 0 0
\(424\) − 158.392i − 0.373566i
\(425\) 207.889i 0.489152i
\(426\) 0 0
\(427\) 0 0
\(428\) − 305.470i − 0.713715i
\(429\) 0 0
\(430\) 0 0
\(431\) − 424.264i − 0.984371i −0.870490 0.492186i \(-0.836198\pi\)
0.870490 0.492186i \(-0.163802\pi\)
\(432\) 0 0
\(433\) −80.0000 −0.184758 −0.0923788 0.995724i \(-0.529447\pi\)
−0.0923788 + 0.995724i \(0.529447\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) − 31.1127i − 0.0713594i
\(437\) − 113.137i − 0.258895i
\(438\) 0 0
\(439\) 192.333i 0.438116i 0.975712 + 0.219058i \(0.0702984\pi\)
−0.975712 + 0.219058i \(0.929702\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 98.9949i − 0.223970i
\(443\) 336.000 0.758465 0.379233 0.925301i \(-0.376188\pi\)
0.379233 + 0.925301i \(0.376188\pi\)
\(444\) 0 0
\(445\) 160.000 0.359551
\(446\) − 197.990i − 0.443924i
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 420.000 0.929204
\(453\) 0 0
\(454\) −176.000 −0.387665
\(455\) 0 0
\(456\) 0 0
\(457\) 91.9239i 0.201146i 0.994930 + 0.100573i \(0.0320677\pi\)
−0.994930 + 0.100573i \(0.967932\pi\)
\(458\) 268.701i 0.586682i
\(459\) 0 0
\(460\) −80.0000 −0.173913
\(461\) − 346.482i − 0.751589i −0.926703 0.375794i \(-0.877370\pi\)
0.926703 0.375794i \(-0.122630\pi\)
\(462\) 0 0
\(463\) −260.000 −0.561555 −0.280778 0.959773i \(-0.590592\pi\)
−0.280778 + 0.959773i \(0.590592\pi\)
\(464\) 28.2843i 0.0609575i
\(465\) 0 0
\(466\) −434.000 −0.931330
\(467\) 40.0000 0.0856531 0.0428266 0.999083i \(-0.486364\pi\)
0.0428266 + 0.999083i \(0.486364\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 124.451i 0.264789i
\(471\) 0 0
\(472\) − 226.274i − 0.479394i
\(473\) 0 0
\(474\) 0 0
\(475\) − 118.794i − 0.250093i
\(476\) 0 0
\(477\) 0 0
\(478\) −360.000 −0.753138
\(479\) 707.107i 1.47621i 0.674683 + 0.738107i \(0.264280\pi\)
−0.674683 + 0.738107i \(0.735720\pi\)
\(480\) 0 0
\(481\) − 212.132i − 0.441023i
\(482\) −142.000 −0.294606
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 300.000 0.616016 0.308008 0.951384i \(-0.400338\pi\)
0.308008 + 0.951384i \(0.400338\pi\)
\(488\) 84.0000 0.172131
\(489\) 0 0
\(490\) − 138.593i − 0.282843i
\(491\) − 537.401i − 1.09450i −0.836968 0.547252i \(-0.815674\pi\)
0.836968 0.547252i \(-0.184326\pi\)
\(492\) 0 0
\(493\) 70.0000 0.141988
\(494\) 56.5685i 0.114511i
\(495\) 0 0
\(496\) 48.0000 0.0967742
\(497\) 0 0
\(498\) 0 0
\(499\) 320.000 0.641283 0.320641 0.947201i \(-0.396102\pi\)
0.320641 + 0.947201i \(0.396102\pi\)
\(500\) −184.000 −0.368000
\(501\) 0 0
\(502\) 226.274i 0.450745i
\(503\) − 463.862i − 0.922191i −0.887351 0.461095i \(-0.847457\pi\)
0.887351 0.461095i \(-0.152543\pi\)
\(504\) 0 0
\(505\) − 325.269i − 0.644097i
\(506\) 0 0
\(507\) 0 0
\(508\) − 339.411i − 0.668132i
\(509\) 280.000 0.550098 0.275049 0.961430i \(-0.411306\pi\)
0.275049 + 0.961430i \(0.411306\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 339.411i 0.660333i
\(515\) −280.000 −0.543689
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 40.0000 0.0769231
\(521\) −690.000 −1.32438 −0.662188 0.749338i \(-0.730372\pi\)
−0.662188 + 0.749338i \(0.730372\pi\)
\(522\) 0 0
\(523\) 905.097i 1.73059i 0.501266 + 0.865293i \(0.332868\pi\)
−0.501266 + 0.865293i \(0.667132\pi\)
\(524\) − 113.137i − 0.215910i
\(525\) 0 0
\(526\) −96.0000 −0.182510
\(527\) − 118.794i − 0.225415i
\(528\) 0 0
\(529\) −129.000 −0.243856
\(530\) − 158.392i − 0.298853i
\(531\) 0 0
\(532\) 0 0
\(533\) 150.000 0.281426
\(534\) 0 0
\(535\) − 305.470i − 0.570972i
\(536\) − 226.274i − 0.422153i
\(537\) 0 0
\(538\) − 395.980i − 0.736022i
\(539\) 0 0
\(540\) 0 0
\(541\) 323.855i 0.598623i 0.954155 + 0.299311i \(0.0967569\pi\)
−0.954155 + 0.299311i \(0.903243\pi\)
\(542\) 568.000 1.04797
\(543\) 0 0
\(544\) 56.0000 0.102941
\(545\) − 31.1127i − 0.0570875i
\(546\) 0 0
\(547\) − 593.970i − 1.08587i −0.839775 0.542934i \(-0.817313\pi\)
0.839775 0.542934i \(-0.182687\pi\)
\(548\) 252.000 0.459854
\(549\) 0 0
\(550\) 0 0
\(551\) −40.0000 −0.0725953
\(552\) 0 0
\(553\) 0 0
\(554\) −490.000 −0.884477
\(555\) 0 0
\(556\) − 158.392i − 0.284878i
\(557\) − 60.8112i − 0.109176i −0.998509 0.0545881i \(-0.982615\pi\)
0.998509 0.0545881i \(-0.0173846\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 270.000 0.480427
\(563\) − 746.705i − 1.32630i −0.748488 0.663148i \(-0.769220\pi\)
0.748488 0.663148i \(-0.230780\pi\)
\(564\) 0 0
\(565\) 420.000 0.743363
\(566\) 520.000 0.918728
\(567\) 0 0
\(568\) 169.706i 0.298778i
\(569\) − 247.487i − 0.434951i −0.976066 0.217476i \(-0.930218\pi\)
0.976066 0.217476i \(-0.0697823\pi\)
\(570\) 0 0
\(571\) 712.764i 1.24827i 0.781315 + 0.624136i \(0.214549\pi\)
−0.781315 + 0.624136i \(0.785451\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 420.000 0.730435
\(576\) 0 0
\(577\) 320.000 0.554593 0.277296 0.960784i \(-0.410562\pi\)
0.277296 + 0.960784i \(0.410562\pi\)
\(578\) 270.115i 0.467327i
\(579\) 0 0
\(580\) 28.2843i 0.0487660i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 220.000 0.376712
\(585\) 0 0
\(586\) 406.000 0.692833
\(587\) −680.000 −1.15843 −0.579216 0.815174i \(-0.696641\pi\)
−0.579216 + 0.815174i \(0.696641\pi\)
\(588\) 0 0
\(589\) 67.8823i 0.115250i
\(590\) − 226.274i − 0.383516i
\(591\) 0 0
\(592\) 120.000 0.202703
\(593\) − 89.0955i − 0.150245i −0.997174 0.0751226i \(-0.976065\pi\)
0.997174 0.0751226i \(-0.0239348\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 127.279i 0.213556i
\(597\) 0 0
\(598\) −200.000 −0.334448
\(599\) 660.000 1.10184 0.550918 0.834559i \(-0.314278\pi\)
0.550918 + 0.834559i \(0.314278\pi\)
\(600\) 0 0
\(601\) 963.079i 1.60246i 0.598355 + 0.801231i \(0.295821\pi\)
−0.598355 + 0.801231i \(0.704179\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 237.588i 0.393357i
\(605\) 0 0
\(606\) 0 0
\(607\) − 509.117i − 0.838743i −0.907815 0.419371i \(-0.862251\pi\)
0.907815 0.419371i \(-0.137749\pi\)
\(608\) −32.0000 −0.0526316
\(609\) 0 0
\(610\) 84.0000 0.137705
\(611\) 311.127i 0.509209i
\(612\) 0 0
\(613\) 742.462i 1.21119i 0.795771 + 0.605597i \(0.207066\pi\)
−0.795771 + 0.605597i \(0.792934\pi\)
\(614\) −720.000 −1.17264
\(615\) 0 0
\(616\) 0 0
\(617\) 830.000 1.34522 0.672609 0.739998i \(-0.265173\pi\)
0.672609 + 0.739998i \(0.265173\pi\)
\(618\) 0 0
\(619\) −840.000 −1.35703 −0.678514 0.734588i \(-0.737376\pi\)
−0.678514 + 0.734588i \(0.737376\pi\)
\(620\) 48.0000 0.0774194
\(621\) 0 0
\(622\) − 197.990i − 0.318312i
\(623\) 0 0
\(624\) 0 0
\(625\) 341.000 0.545600
\(626\) 494.975i 0.790694i
\(627\) 0 0
\(628\) −80.0000 −0.127389
\(629\) − 296.985i − 0.472154i
\(630\) 0 0
\(631\) 700.000 1.10935 0.554675 0.832067i \(-0.312843\pi\)
0.554675 + 0.832067i \(0.312843\pi\)
\(632\) −176.000 −0.278481
\(633\) 0 0
\(634\) 70.7107i 0.111531i
\(635\) − 339.411i − 0.534506i
\(636\) 0 0
\(637\) − 346.482i − 0.543928i
\(638\) 0 0
\(639\) 0 0
\(640\) 22.6274i 0.0353553i
\(641\) 880.000 1.37285 0.686427 0.727198i \(-0.259178\pi\)
0.686427 + 0.727198i \(0.259178\pi\)
\(642\) 0 0
\(643\) −280.000 −0.435459 −0.217729 0.976009i \(-0.569865\pi\)
−0.217729 + 0.976009i \(0.569865\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 79.1960i 0.122594i
\(647\) −556.000 −0.859351 −0.429675 0.902983i \(-0.641372\pi\)
−0.429675 + 0.902983i \(0.641372\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −210.000 −0.323077
\(651\) 0 0
\(652\) −80.0000 −0.122699
\(653\) −840.000 −1.28637 −0.643185 0.765711i \(-0.722388\pi\)
−0.643185 + 0.765711i \(0.722388\pi\)
\(654\) 0 0
\(655\) − 113.137i − 0.172728i
\(656\) 84.8528i 0.129349i
\(657\) 0 0
\(658\) 0 0
\(659\) − 933.381i − 1.41636i −0.706032 0.708180i \(-0.749517\pi\)
0.706032 0.708180i \(-0.250483\pi\)
\(660\) 0 0
\(661\) 840.000 1.27080 0.635401 0.772182i \(-0.280835\pi\)
0.635401 + 0.772182i \(0.280835\pi\)
\(662\) − 395.980i − 0.598157i
\(663\) 0 0
\(664\) −112.000 −0.168675
\(665\) 0 0
\(666\) 0 0
\(667\) − 141.421i − 0.212026i
\(668\) − 531.744i − 0.796024i
\(669\) 0 0
\(670\) − 226.274i − 0.337723i
\(671\) 0 0
\(672\) 0 0
\(673\) 374.767i 0.556860i 0.960457 + 0.278430i \(0.0898140\pi\)
−0.960457 + 0.278430i \(0.910186\pi\)
\(674\) 450.000 0.667656
\(675\) 0 0
\(676\) −238.000 −0.352071
\(677\) 980.050i 1.44764i 0.689991 + 0.723818i \(0.257615\pi\)
−0.689991 + 0.723818i \(0.742385\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 56.0000 0.0823529
\(681\) 0 0
\(682\) 0 0
\(683\) 616.000 0.901903 0.450952 0.892548i \(-0.351085\pi\)
0.450952 + 0.892548i \(0.351085\pi\)
\(684\) 0 0
\(685\) 252.000 0.367883
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 395.980i − 0.574717i
\(690\) 0 0
\(691\) −832.000 −1.20405 −0.602026 0.798476i \(-0.705640\pi\)
−0.602026 + 0.798476i \(0.705640\pi\)
\(692\) − 489.318i − 0.707107i
\(693\) 0 0
\(694\) 504.000 0.726225
\(695\) − 158.392i − 0.227902i
\(696\) 0 0
\(697\) 210.000 0.301291
\(698\) 858.000 1.22923
\(699\) 0 0
\(700\) 0 0
\(701\) − 742.462i − 1.05915i −0.848264 0.529574i \(-0.822352\pi\)
0.848264 0.529574i \(-0.177648\pi\)
\(702\) 0 0
\(703\) 169.706i 0.241402i
\(704\) 0 0
\(705\) 0 0
\(706\) − 362.039i − 0.512803i
\(707\) 0 0
\(708\) 0 0
\(709\) 1118.00 1.57687 0.788434 0.615119i \(-0.210892\pi\)
0.788434 + 0.615119i \(0.210892\pi\)
\(710\) 169.706i 0.239022i
\(711\) 0 0
\(712\) 226.274i 0.317801i
\(713\) −240.000 −0.336606
\(714\) 0 0
\(715\) 0 0
\(716\) 640.000 0.893855
\(717\) 0 0
\(718\) −560.000 −0.779944
\(719\) −380.000 −0.528512 −0.264256 0.964453i \(-0.585126\pi\)
−0.264256 + 0.964453i \(0.585126\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 465.276i 0.644427i
\(723\) 0 0
\(724\) −260.000 −0.359116
\(725\) − 148.492i − 0.204817i
\(726\) 0 0
\(727\) 500.000 0.687758 0.343879 0.939014i \(-0.388259\pi\)
0.343879 + 0.939014i \(0.388259\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 220.000 0.301370
\(731\) 0 0
\(732\) 0 0
\(733\) 445.477i 0.607745i 0.952713 + 0.303873i \(0.0982797\pi\)
−0.952713 + 0.303873i \(0.901720\pi\)
\(734\) 141.421i 0.192672i
\(735\) 0 0
\(736\) − 113.137i − 0.153719i
\(737\) 0 0
\(738\) 0 0
\(739\) − 1193.60i − 1.61515i −0.589765 0.807575i \(-0.700779\pi\)
0.589765 0.807575i \(-0.299221\pi\)
\(740\) 120.000 0.162162
\(741\) 0 0
\(742\) 0 0
\(743\) − 379.009i − 0.510107i −0.966927 0.255053i \(-0.917907\pi\)
0.966927 0.255053i \(-0.0820930\pi\)
\(744\) 0 0
\(745\) 127.279i 0.170845i
\(746\) 150.000 0.201072
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 180.000 0.239680 0.119840 0.992793i \(-0.461762\pi\)
0.119840 + 0.992793i \(0.461762\pi\)
\(752\) −176.000 −0.234043
\(753\) 0 0
\(754\) 70.7107i 0.0937807i
\(755\) 237.588i 0.314686i
\(756\) 0 0
\(757\) 1240.00 1.63804 0.819022 0.573761i \(-0.194516\pi\)
0.819022 + 0.573761i \(0.194516\pi\)
\(758\) − 11.3137i − 0.0149257i
\(759\) 0 0
\(760\) −32.0000 −0.0421053
\(761\) − 1378.86i − 1.81190i −0.423381 0.905952i \(-0.639157\pi\)
0.423381 0.905952i \(-0.360843\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −520.000 −0.680628
\(765\) 0 0
\(766\) 164.049i 0.214163i
\(767\) − 565.685i − 0.737530i
\(768\) 0 0
\(769\) 12.7279i 0.0165513i 0.999966 + 0.00827563i \(0.00263425\pi\)
−0.999966 + 0.00827563i \(0.997366\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 296.985i − 0.384695i
\(773\) 360.000 0.465718 0.232859 0.972511i \(-0.425192\pi\)
0.232859 + 0.972511i \(0.425192\pi\)
\(774\) 0 0
\(775\) −252.000 −0.325161
\(776\) 0 0
\(777\) 0 0
\(778\) 42.4264i 0.0545327i
\(779\) −120.000 −0.154044
\(780\) 0 0
\(781\) 0 0
\(782\) −280.000 −0.358056
\(783\) 0 0
\(784\) 196.000 0.250000
\(785\) −80.0000 −0.101911
\(786\) 0 0
\(787\) − 169.706i − 0.215636i −0.994171 0.107818i \(-0.965614\pi\)
0.994171 0.107818i \(-0.0343864\pi\)
\(788\) − 444.063i − 0.563532i
\(789\) 0 0
\(790\) −176.000 −0.222785
\(791\) 0 0
\(792\) 0 0
\(793\) 210.000 0.264817
\(794\) − 395.980i − 0.498715i
\(795\) 0 0
\(796\) 280.000 0.351759
\(797\) 1170.00 1.46801 0.734003 0.679147i \(-0.237650\pi\)
0.734003 + 0.679147i \(0.237650\pi\)
\(798\) 0 0
\(799\) 435.578i 0.545154i
\(800\) − 118.794i − 0.148492i
\(801\) 0 0
\(802\) 494.975i 0.617175i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 120.000 0.148883
\(807\) 0 0
\(808\) 460.000 0.569307
\(809\) 813.173i 1.00516i 0.864531 + 0.502579i \(0.167615\pi\)
−0.864531 + 0.502579i \(0.832385\pi\)
\(810\) 0 0
\(811\) − 135.765i − 0.167404i −0.996491 0.0837019i \(-0.973326\pi\)
0.996491 0.0837019i \(-0.0266744\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −80.0000 −0.0981595
\(816\) 0 0
\(817\) 0 0
\(818\) −738.000 −0.902200
\(819\) 0 0
\(820\) 84.8528i 0.103479i
\(821\) 954.594i 1.16272i 0.813646 + 0.581361i \(0.197479\pi\)
−0.813646 + 0.581361i \(0.802521\pi\)
\(822\) 0 0
\(823\) −340.000 −0.413123 −0.206561 0.978434i \(-0.566227\pi\)
−0.206561 + 0.978434i \(0.566227\pi\)
\(824\) − 395.980i − 0.480558i
\(825\) 0 0
\(826\) 0 0
\(827\) − 181.019i − 0.218887i −0.993993 0.109443i \(-0.965093\pi\)
0.993993 0.109443i \(-0.0349068\pi\)
\(828\) 0 0
\(829\) −280.000 −0.337756 −0.168878 0.985637i \(-0.554014\pi\)
−0.168878 + 0.985637i \(0.554014\pi\)
\(830\) −112.000 −0.134940
\(831\) 0 0
\(832\) 56.5685i 0.0679910i
\(833\) − 485.075i − 0.582323i
\(834\) 0 0
\(835\) − 531.744i − 0.636820i
\(836\) 0 0
\(837\) 0 0
\(838\) 226.274i 0.270017i
\(839\) 1660.00 1.97855 0.989273 0.146079i \(-0.0466653\pi\)
0.989273 + 0.146079i \(0.0466653\pi\)
\(840\) 0 0
\(841\) 791.000 0.940547
\(842\) 11.3137i 0.0134367i
\(843\) 0 0
\(844\) − 237.588i − 0.281502i
\(845\) −238.000 −0.281657
\(846\) 0 0
\(847\) 0 0
\(848\) 224.000 0.264151
\(849\) 0 0
\(850\) −294.000 −0.345882
\(851\) −600.000 −0.705053
\(852\) 0 0
\(853\) 63.6396i 0.0746068i 0.999304 + 0.0373034i \(0.0118768\pi\)
−0.999304 + 0.0373034i \(0.988123\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 432.000 0.504673
\(857\) − 89.0955i − 0.103962i −0.998648 0.0519810i \(-0.983446\pi\)
0.998648 0.0519810i \(-0.0165535\pi\)
\(858\) 0 0
\(859\) 400.000 0.465658 0.232829 0.972518i \(-0.425202\pi\)
0.232829 + 0.972518i \(0.425202\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 600.000 0.696056
\(863\) 524.000 0.607184 0.303592 0.952802i \(-0.401814\pi\)
0.303592 + 0.952802i \(0.401814\pi\)
\(864\) 0 0
\(865\) − 489.318i − 0.565685i
\(866\) − 113.137i − 0.130643i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) − 565.685i − 0.649467i
\(872\) 44.0000 0.0504587
\(873\) 0 0
\(874\) 160.000 0.183066
\(875\) 0 0
\(876\) 0 0
\(877\) 742.462i 0.846593i 0.905991 + 0.423297i \(0.139127\pi\)
−0.905991 + 0.423297i \(0.860873\pi\)
\(878\) −272.000 −0.309795
\(879\) 0 0
\(880\) 0 0
\(881\) −190.000 −0.215664 −0.107832 0.994169i \(-0.534391\pi\)
−0.107832 + 0.994169i \(0.534391\pi\)
\(882\) 0 0
\(883\) −1280.00 −1.44960 −0.724802 0.688957i \(-0.758069\pi\)
−0.724802 + 0.688957i \(0.758069\pi\)
\(884\) 140.000 0.158371
\(885\) 0 0
\(886\) 475.176i 0.536316i
\(887\) − 1227.54i − 1.38392i −0.721936 0.691960i \(-0.756747\pi\)
0.721936 0.691960i \(-0.243253\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 226.274i 0.254241i
\(891\) 0 0
\(892\) 280.000 0.313901
\(893\) − 248.902i − 0.278725i
\(894\) 0 0
\(895\) 640.000 0.715084
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 84.8528i 0.0943858i
\(900\) 0 0
\(901\) − 554.372i − 0.615285i
\(902\) 0 0
\(903\) 0 0
\(904\) 593.970i 0.657046i
\(905\) −260.000 −0.287293
\(906\) 0 0
\(907\) −840.000 −0.926130 −0.463065 0.886324i \(-0.653250\pi\)
−0.463065 + 0.886324i \(0.653250\pi\)
\(908\) − 248.902i − 0.274121i
\(909\) 0 0
\(910\) 0 0
\(911\) 700.000 0.768386 0.384193 0.923253i \(-0.374480\pi\)
0.384193 + 0.923253i \(0.374480\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −130.000 −0.142232
\(915\) 0 0
\(916\) −380.000 −0.414847
\(917\) 0 0
\(918\) 0 0
\(919\) 475.176i 0.517057i 0.966004 + 0.258529i \(0.0832377\pi\)
−0.966004 + 0.258529i \(0.916762\pi\)
\(920\) − 113.137i − 0.122975i
\(921\) 0 0
\(922\) 490.000 0.531453
\(923\) 424.264i 0.459658i
\(924\) 0 0
\(925\) −630.000 −0.681081
\(926\) − 367.696i − 0.397079i
\(927\) 0 0
\(928\) −40.0000 −0.0431034
\(929\) −1010.00 −1.08719 −0.543595 0.839347i \(-0.682937\pi\)
−0.543595 + 0.839347i \(0.682937\pi\)
\(930\) 0 0
\(931\) 277.186i 0.297729i
\(932\) − 613.769i − 0.658550i
\(933\) 0 0
\(934\) 56.5685i 0.0605659i
\(935\) 0 0
\(936\) 0 0
\(937\) 148.492i 0.158476i 0.996856 + 0.0792382i \(0.0252488\pi\)
−0.996856 + 0.0792382i \(0.974751\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −176.000 −0.187234
\(941\) − 1647.56i − 1.75086i −0.483345 0.875430i \(-0.660578\pi\)
0.483345 0.875430i \(-0.339422\pi\)
\(942\) 0 0
\(943\) − 424.264i − 0.449909i
\(944\) 320.000 0.338983
\(945\) 0 0
\(946\) 0 0
\(947\) −344.000 −0.363252 −0.181626 0.983368i \(-0.558136\pi\)
−0.181626 + 0.983368i \(0.558136\pi\)
\(948\) 0 0
\(949\) 550.000 0.579557
\(950\) 168.000 0.176842
\(951\) 0 0
\(952\) 0 0
\(953\) − 363.453i − 0.381378i −0.981651 0.190689i \(-0.938928\pi\)
0.981651 0.190689i \(-0.0610721\pi\)
\(954\) 0 0
\(955\) −520.000 −0.544503
\(956\) − 509.117i − 0.532549i
\(957\) 0 0
\(958\) −1000.00 −1.04384
\(959\) 0 0
\(960\) 0 0
\(961\) −817.000 −0.850156
\(962\) 300.000 0.311850
\(963\) 0 0
\(964\) − 200.818i − 0.208318i
\(965\) − 296.985i − 0.307756i
\(966\) 0 0
\(967\) 1187.94i 1.22848i 0.789120 + 0.614240i \(0.210537\pi\)
−0.789120 + 0.614240i \(0.789463\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 800.000 0.823893 0.411946 0.911208i \(-0.364849\pi\)
0.411946 + 0.911208i \(0.364849\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 424.264i 0.435589i
\(975\) 0 0
\(976\) 118.794i 0.121715i
\(977\) 446.000 0.456499 0.228250 0.973603i \(-0.426700\pi\)
0.228250 + 0.973603i \(0.426700\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 196.000 0.200000
\(981\) 0 0
\(982\) 760.000 0.773931
\(983\) 84.0000 0.0854527 0.0427263 0.999087i \(-0.486396\pi\)
0.0427263 + 0.999087i \(0.486396\pi\)
\(984\) 0 0
\(985\) − 444.063i − 0.450825i
\(986\) 98.9949i 0.100401i
\(987\) 0 0
\(988\) −80.0000 −0.0809717
\(989\) 0 0
\(990\) 0 0
\(991\) 732.000 0.738648 0.369324 0.929301i \(-0.379589\pi\)
0.369324 + 0.929301i \(0.379589\pi\)
\(992\) 67.8823i 0.0684297i
\(993\) 0 0
\(994\) 0 0
\(995\) 280.000 0.281407
\(996\) 0 0
\(997\) 1138.44i 1.14187i 0.820996 + 0.570934i \(0.193419\pi\)
−0.820996 + 0.570934i \(0.806581\pi\)
\(998\) 452.548i 0.453455i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2178.3.d.b.1693.2 yes 2
3.2 odd 2 2178.3.d.c.1693.1 yes 2
11.10 odd 2 inner 2178.3.d.b.1693.1 2
33.32 even 2 2178.3.d.c.1693.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2178.3.d.b.1693.1 2 11.10 odd 2 inner
2178.3.d.b.1693.2 yes 2 1.1 even 1 trivial
2178.3.d.c.1693.1 yes 2 3.2 odd 2
2178.3.d.c.1693.2 yes 2 33.32 even 2