Properties

Label 4-20e4-1.1-c3e2-0-5
Degree $4$
Conductor $160000$
Sign $1$
Analytic cond. $556.996$
Root an. cond. $4.85806$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·9-s − 54·11-s + 70·19-s + 240·29-s − 364·31-s + 714·41-s − 470·49-s − 1.68e3·59-s − 476·61-s + 1.41e3·71-s + 1.30e3·79-s − 704·81-s − 1.47e3·89-s − 270·99-s + 924·101-s − 460·109-s − 475·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 3.61e3·169-s + ⋯
L(s)  = 1  + 5/27·9-s − 1.48·11-s + 0.845·19-s + 1.53·29-s − 2.10·31-s + 2.71·41-s − 1.37·49-s − 3.70·59-s − 0.999·61-s + 2.36·71-s + 1.85·79-s − 0.965·81-s − 1.75·89-s − 0.274·99-s + 0.910·101-s − 0.404·109-s − 0.356·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 1.64·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(160000\)    =    \(2^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(556.996\)
Root analytic conductor: \(4.85806\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 160000,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.584450749\)
\(L(\frac12)\) \(\approx\) \(1.584450749\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( 1 - 5 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 + 470 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + 27 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 3610 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 9385 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 - 35 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 18250 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 120 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 182 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 79990 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 357 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 137110 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 200590 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 + 195050 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 + 840 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 238 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 389005 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 708 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 760345 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 650 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 328165 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 735 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 602110 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.23890474387156454736286874748, −10.53087313040322828086421049384, −10.41416317741963029634469654433, −9.478853961532843889041616458048, −9.427679497786137879655490961851, −8.950091214810801509417321879533, −7.976674798775612194678367036671, −7.921197876605761506314142459991, −7.56346089322731835121402259282, −6.84268322012524559332285609938, −6.36451455880112868741155560055, −5.66581019935354795711993019512, −5.37493663583854497280831777474, −4.68648807293860201948425349353, −4.29758836507083490149384442211, −3.32878092578397869563929963882, −2.95312755914009202373772203526, −2.22633472186606494185775171978, −1.39008959333081297590883217788, −0.43288256417019129105538695961, 0.43288256417019129105538695961, 1.39008959333081297590883217788, 2.22633472186606494185775171978, 2.95312755914009202373772203526, 3.32878092578397869563929963882, 4.29758836507083490149384442211, 4.68648807293860201948425349353, 5.37493663583854497280831777474, 5.66581019935354795711993019512, 6.36451455880112868741155560055, 6.84268322012524559332285609938, 7.56346089322731835121402259282, 7.921197876605761506314142459991, 7.976674798775612194678367036671, 8.950091214810801509417321879533, 9.427679497786137879655490961851, 9.478853961532843889041616458048, 10.41416317741963029634469654433, 10.53087313040322828086421049384, 11.23890474387156454736286874748

Graph of the $Z$-function along the critical line