| L(s) = 1 | − 2·4-s + 7-s + 9-s + 4·11-s + 4·16-s − 2·23-s + 7·25-s − 2·28-s − 6·29-s − 2·36-s − 8·37-s − 6·43-s − 8·44-s − 6·49-s + 2·53-s + 63-s − 8·64-s + 67-s − 14·71-s + 4·77-s + 22·79-s + 81-s + 4·92-s + 4·99-s − 14·100-s − 14·107-s − 5·109-s + ⋯ |
| L(s) = 1 | − 4-s + 0.377·7-s + 1/3·9-s + 1.20·11-s + 16-s − 0.417·23-s + 7/5·25-s − 0.377·28-s − 1.11·29-s − 1/3·36-s − 1.31·37-s − 0.914·43-s − 1.20·44-s − 6/7·49-s + 0.274·53-s + 0.125·63-s − 64-s + 0.122·67-s − 1.66·71-s + 0.455·77-s + 2.47·79-s + 1/9·81-s + 0.417·92-s + 0.402·99-s − 7/5·100-s − 1.35·107-s − 0.478·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1707552 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1707552 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.61893543170843916071894921244, −7.26614969297607450879694554648, −6.67462895486749139285207411600, −6.46751358104590098821941953451, −5.84311522766738279123103516873, −5.31704574996115538717927190226, −4.96305678192425083863033529776, −4.56127271447930976027443374773, −4.01829869616617289764214597371, −3.58781784922424286180081538943, −3.25309713598141003968806378835, −2.33900855794272030706500907035, −1.56555337111917917913802024638, −1.14757780875046504716833459048, 0,
1.14757780875046504716833459048, 1.56555337111917917913802024638, 2.33900855794272030706500907035, 3.25309713598141003968806378835, 3.58781784922424286180081538943, 4.01829869616617289764214597371, 4.56127271447930976027443374773, 4.96305678192425083863033529776, 5.31704574996115538717927190226, 5.84311522766738279123103516873, 6.46751358104590098821941953451, 6.67462895486749139285207411600, 7.26614969297607450879694554648, 7.61893543170843916071894921244