| L(s) = 1 | − 2-s + 4-s − 2·7-s − 8-s + 9-s + 3·11-s + 2·14-s + 16-s − 18-s − 3·22-s − 2·23-s + 2·25-s − 2·28-s − 29-s − 32-s + 36-s + 5·37-s + 43-s + 3·44-s + 2·46-s − 3·49-s − 2·50-s − 7·53-s + 2·56-s + 58-s − 2·63-s + 64-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.904·11-s + 0.534·14-s + 1/4·16-s − 0.235·18-s − 0.639·22-s − 0.417·23-s + 2/5·25-s − 0.377·28-s − 0.185·29-s − 0.176·32-s + 1/6·36-s + 0.821·37-s + 0.152·43-s + 0.452·44-s + 0.294·46-s − 3/7·49-s − 0.282·50-s − 0.961·53-s + 0.267·56-s + 0.131·58-s − 0.251·63-s + 1/8·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1707552 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1707552 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.72426935857317195641995794120, −7.25194908001777634105498174257, −6.70817364790378194684152565421, −6.47852299858105369932704305830, −6.03109206039042596986967682968, −5.67963685856146347272054013618, −4.95869588364017305169212103434, −4.41832612752334635779782163226, −4.05990786741313211718330433522, −3.32581303835425683052326387771, −3.07266529097166901354371432444, −2.31872611325556599436506803523, −1.65102465034092613246001194236, −1.03728279270502598206215244314, 0,
1.03728279270502598206215244314, 1.65102465034092613246001194236, 2.31872611325556599436506803523, 3.07266529097166901354371432444, 3.32581303835425683052326387771, 4.05990786741313211718330433522, 4.41832612752334635779782163226, 4.95869588364017305169212103434, 5.67963685856146347272054013618, 6.03109206039042596986967682968, 6.47852299858105369932704305830, 6.70817364790378194684152565421, 7.25194908001777634105498174257, 7.72426935857317195641995794120