L(s) = 1 | + 4·5-s + 2·7-s + 8·17-s + 2·19-s + 4·23-s + 5·25-s + 4·29-s − 10·31-s + 8·35-s + 6·37-s + 8·41-s + 4·43-s + 4·47-s + 3·49-s + 16·53-s + 12·59-s + 8·61-s − 24·67-s + 12·71-s − 4·73-s − 4·79-s − 12·83-s + 32·85-s + 32·89-s + 8·95-s − 16·97-s − 18·103-s + ⋯ |
L(s) = 1 | + 1.78·5-s + 0.755·7-s + 1.94·17-s + 0.458·19-s + 0.834·23-s + 25-s + 0.742·29-s − 1.79·31-s + 1.35·35-s + 0.986·37-s + 1.24·41-s + 0.609·43-s + 0.583·47-s + 3/7·49-s + 2.19·53-s + 1.56·59-s + 1.02·61-s − 2.93·67-s + 1.42·71-s − 0.468·73-s − 0.450·79-s − 1.31·83-s + 3.47·85-s + 3.39·89-s + 0.820·95-s − 1.62·97-s − 1.77·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.790611056\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.790611056\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.621546737144327897871465773623, −9.366050569748867859493408661165, −8.848174497036033205657547335538, −8.739699860124162947939662373389, −7.955069964060904614450729302240, −7.69350774088941189907911998352, −7.22951191492484334055534496009, −7.00397195988806834503008826068, −6.15667459762770627374079003275, −5.94032351379157600151098219327, −5.52766286654012376560561691630, −5.32274104793998930414910573708, −4.88308638061677817043011963480, −4.12045328296947216208219627951, −3.75331969499395054947676936677, −3.04481976939573819137472147040, −2.42803383589021507711138740486, −2.17858273755822238038639113327, −1.17236735730366141167327305531, −1.11494321412766035622523018944,
1.11494321412766035622523018944, 1.17236735730366141167327305531, 2.17858273755822238038639113327, 2.42803383589021507711138740486, 3.04481976939573819137472147040, 3.75331969499395054947676936677, 4.12045328296947216208219627951, 4.88308638061677817043011963480, 5.32274104793998930414910573708, 5.52766286654012376560561691630, 5.94032351379157600151098219327, 6.15667459762770627374079003275, 7.00397195988806834503008826068, 7.22951191492484334055534496009, 7.69350774088941189907911998352, 7.955069964060904614450729302240, 8.739699860124162947939662373389, 8.848174497036033205657547335538, 9.366050569748867859493408661165, 9.621546737144327897871465773623