L(s) = 1 | + 4·2-s + 6·3-s + 12·4-s + 10·5-s + 24·6-s − 30·7-s + 32·8-s + 27·9-s + 40·10-s − 77·11-s + 72·12-s − 36·13-s − 120·14-s + 60·15-s + 80·16-s − 65·17-s + 108·18-s − 55·19-s + 120·20-s − 180·21-s − 308·22-s − 128·23-s + 192·24-s + 75·25-s − 144·26-s + 108·27-s − 360·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.15·3-s + 3/2·4-s + 0.894·5-s + 1.63·6-s − 1.61·7-s + 1.41·8-s + 9-s + 1.26·10-s − 2.11·11-s + 1.73·12-s − 0.768·13-s − 2.29·14-s + 1.03·15-s + 5/4·16-s − 0.927·17-s + 1.41·18-s − 0.664·19-s + 1.34·20-s − 1.87·21-s − 2.98·22-s − 1.16·23-s + 1.63·24-s + 3/5·25-s − 1.08·26-s + 0.769·27-s − 2.42·28-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1232100s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
4289.21 |
Root analytic conductor: |
8.09272 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 1232100, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−pT)2 |
| 3 | C1 | (1−pT)2 |
| 5 | C1 | (1−pT)2 |
| 37 | C1 | (1+pT)2 |
good | 7 | C2 | (1+15T+p3T2)2 |
| 11 | D4 | 1+7pT+4007T2+7p4T3+p6T4 |
| 13 | D4 | 1+36T+3193T2+36p3T3+p6T4 |
| 17 | D4 | 1+65T+10501T2+65p3T3+p6T4 |
| 19 | D4 | 1+55T+8969T2+55p3T3+p6T4 |
| 23 | D4 | 1+128T+18121T2+128p3T3+p6T4 |
| 29 | D4 | 1+53T+12865T2+53p3T3+p6T4 |
| 31 | D4 | 1+388T+86909T2+388p3T3+p6T4 |
| 41 | D4 | 1−118T+12247T2−118p3T3+p6T4 |
| 43 | D4 | 1+353T+147329T2+353p3T3+p6T4 |
| 47 | D4 | 1+146T+209071T2+146p3T3+p6T4 |
| 53 | D4 | 1+448T+128330T2+448p3T3+p6T4 |
| 59 | D4 | 1+17T+34933T2+17p3T3+p6T4 |
| 61 | D4 | 1+18T+383527T2+18p3T3+p6T4 |
| 67 | D4 | 1−147T+525661T2−147p3T3+p6T4 |
| 71 | D4 | 1+45T+584431T2+45p3T3+p6T4 |
| 73 | D4 | 1−163T+750989T2−163p3T3+p6T4 |
| 79 | D4 | 1+53T+975663T2+53p3T3+p6T4 |
| 83 | D4 | 1+1389T+1372129T2+1389p3T3+p6T4 |
| 89 | D4 | 1+1018T+1334983T2+1018p3T3+p6T4 |
| 97 | D4 | 1−2318T+3080543T2−2318p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.208502415486305368825616976892, −9.067390319827868482280830045114, −8.215241971356809728310252408823, −8.082150181684514821760595250866, −7.31401712948829052649502822530, −7.27534755602640002920595316717, −6.49911929555020335862029939160, −6.43016238123071192543092571516, −5.64883855075278718172805936018, −5.54158566327720649219651126236, −4.73061997157057649994681705515, −4.65056697063125303034925956830, −3.62312777389315297434712970495, −3.57773536804614854620816769602, −2.74163251680221382164206737512, −2.71833802875145940837054996106, −1.88738428039713629892708528973, −1.88138243943507535629368002119, 0, 0,
1.88138243943507535629368002119, 1.88738428039713629892708528973, 2.71833802875145940837054996106, 2.74163251680221382164206737512, 3.57773536804614854620816769602, 3.62312777389315297434712970495, 4.65056697063125303034925956830, 4.73061997157057649994681705515, 5.54158566327720649219651126236, 5.64883855075278718172805936018, 6.43016238123071192543092571516, 6.49911929555020335862029939160, 7.27534755602640002920595316717, 7.31401712948829052649502822530, 8.082150181684514821760595250866, 8.215241971356809728310252408823, 9.067390319827868482280830045114, 9.208502415486305368825616976892