Properties

Label 1110.4.a.d.1.2
Level $1110$
Weight $4$
Character 1110.1
Self dual yes
Analytic conductor $65.492$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1110,4,Mod(1,1110)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1110.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1110, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1110.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,6,8,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.4921201064\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{61}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.40512\) of defining polynomial
Character \(\chi\) \(=\) 1110.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.00000 q^{3} +4.00000 q^{4} +5.00000 q^{5} +6.00000 q^{6} -15.0000 q^{7} +8.00000 q^{8} +9.00000 q^{9} +10.0000 q^{10} -26.7846 q^{11} +12.0000 q^{12} -57.0512 q^{13} -30.0000 q^{14} +15.0000 q^{15} +16.0000 q^{16} -12.9744 q^{17} +18.0000 q^{18} +46.6974 q^{19} +20.0000 q^{20} -45.0000 q^{21} -53.5693 q^{22} -165.533 q^{23} +24.0000 q^{24} +25.0000 q^{25} -114.102 q^{26} +27.0000 q^{27} -60.0000 q^{28} +164.851 q^{29} +30.0000 q^{30} -295.533 q^{31} +32.0000 q^{32} -80.3539 q^{33} -25.9488 q^{34} -75.0000 q^{35} +36.0000 q^{36} -37.0000 q^{37} +93.3947 q^{38} -171.154 q^{39} +40.0000 q^{40} -300.271 q^{41} -90.0000 q^{42} +30.4716 q^{43} -107.139 q^{44} +45.0000 q^{45} -331.066 q^{46} -135.482 q^{47} +48.0000 q^{48} -118.000 q^{49} +50.0000 q^{50} -38.9231 q^{51} -228.205 q^{52} +244.615 q^{53} +54.0000 q^{54} -133.923 q^{55} -120.000 q^{56} +140.092 q^{57} +329.702 q^{58} -621.605 q^{59} +60.0000 q^{60} -274.548 q^{61} -591.066 q^{62} -135.000 q^{63} +64.0000 q^{64} -285.256 q^{65} -160.708 q^{66} +358.574 q^{67} -51.8975 q^{68} -496.600 q^{69} -150.000 q^{70} +340.677 q^{71} +72.0000 q^{72} +265.041 q^{73} -74.0000 q^{74} +75.0000 q^{75} +186.789 q^{76} +401.769 q^{77} -342.307 q^{78} +78.9384 q^{79} +80.0000 q^{80} +81.0000 q^{81} -600.543 q^{82} -1198.26 q^{83} -180.000 q^{84} -64.8719 q^{85} +60.9432 q^{86} +494.553 q^{87} -214.277 q^{88} +68.9585 q^{89} +90.0000 q^{90} +855.769 q^{91} -662.133 q^{92} -886.600 q^{93} -270.964 q^{94} +233.487 q^{95} +96.0000 q^{96} +862.211 q^{97} -236.000 q^{98} -241.062 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 6 q^{3} + 8 q^{4} + 10 q^{5} + 12 q^{6} - 30 q^{7} + 16 q^{8} + 18 q^{9} + 20 q^{10} - 77 q^{11} + 24 q^{12} - 36 q^{13} - 60 q^{14} + 30 q^{15} + 32 q^{16} - 65 q^{17} + 36 q^{18} - 55 q^{19}+ \cdots - 693 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 3.00000 0.577350
\(4\) 4.00000 0.500000
\(5\) 5.00000 0.447214
\(6\) 6.00000 0.408248
\(7\) −15.0000 −0.809924 −0.404962 0.914334i \(-0.632715\pi\)
−0.404962 + 0.914334i \(0.632715\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) 10.0000 0.316228
\(11\) −26.7846 −0.734170 −0.367085 0.930187i \(-0.619644\pi\)
−0.367085 + 0.930187i \(0.619644\pi\)
\(12\) 12.0000 0.288675
\(13\) −57.0512 −1.21717 −0.608583 0.793490i \(-0.708262\pi\)
−0.608583 + 0.793490i \(0.708262\pi\)
\(14\) −30.0000 −0.572703
\(15\) 15.0000 0.258199
\(16\) 16.0000 0.250000
\(17\) −12.9744 −0.185103 −0.0925514 0.995708i \(-0.529502\pi\)
−0.0925514 + 0.995708i \(0.529502\pi\)
\(18\) 18.0000 0.235702
\(19\) 46.6974 0.563848 0.281924 0.959437i \(-0.409027\pi\)
0.281924 + 0.959437i \(0.409027\pi\)
\(20\) 20.0000 0.223607
\(21\) −45.0000 −0.467610
\(22\) −53.5693 −0.519136
\(23\) −165.533 −1.50070 −0.750349 0.661042i \(-0.770115\pi\)
−0.750349 + 0.661042i \(0.770115\pi\)
\(24\) 24.0000 0.204124
\(25\) 25.0000 0.200000
\(26\) −114.102 −0.860667
\(27\) 27.0000 0.192450
\(28\) −60.0000 −0.404962
\(29\) 164.851 1.05559 0.527795 0.849372i \(-0.323019\pi\)
0.527795 + 0.849372i \(0.323019\pi\)
\(30\) 30.0000 0.182574
\(31\) −295.533 −1.71224 −0.856118 0.516780i \(-0.827131\pi\)
−0.856118 + 0.516780i \(0.827131\pi\)
\(32\) 32.0000 0.176777
\(33\) −80.3539 −0.423873
\(34\) −25.9488 −0.130887
\(35\) −75.0000 −0.362209
\(36\) 36.0000 0.166667
\(37\) −37.0000 −0.164399
\(38\) 93.3947 0.398701
\(39\) −171.154 −0.702732
\(40\) 40.0000 0.158114
\(41\) −300.271 −1.14377 −0.571884 0.820334i \(-0.693787\pi\)
−0.571884 + 0.820334i \(0.693787\pi\)
\(42\) −90.0000 −0.330650
\(43\) 30.4716 0.108067 0.0540335 0.998539i \(-0.482792\pi\)
0.0540335 + 0.998539i \(0.482792\pi\)
\(44\) −107.139 −0.367085
\(45\) 45.0000 0.149071
\(46\) −331.066 −1.06115
\(47\) −135.482 −0.420470 −0.210235 0.977651i \(-0.567423\pi\)
−0.210235 + 0.977651i \(0.567423\pi\)
\(48\) 48.0000 0.144338
\(49\) −118.000 −0.344023
\(50\) 50.0000 0.141421
\(51\) −38.9231 −0.106869
\(52\) −228.205 −0.608583
\(53\) 244.615 0.633971 0.316985 0.948430i \(-0.397329\pi\)
0.316985 + 0.948430i \(0.397329\pi\)
\(54\) 54.0000 0.136083
\(55\) −133.923 −0.328331
\(56\) −120.000 −0.286351
\(57\) 140.092 0.325538
\(58\) 329.702 0.746414
\(59\) −621.605 −1.37163 −0.685814 0.727777i \(-0.740554\pi\)
−0.685814 + 0.727777i \(0.740554\pi\)
\(60\) 60.0000 0.129099
\(61\) −274.548 −0.576268 −0.288134 0.957590i \(-0.593035\pi\)
−0.288134 + 0.957590i \(0.593035\pi\)
\(62\) −591.066 −1.21073
\(63\) −135.000 −0.269975
\(64\) 64.0000 0.125000
\(65\) −285.256 −0.544334
\(66\) −160.708 −0.299724
\(67\) 358.574 0.653833 0.326916 0.945053i \(-0.393990\pi\)
0.326916 + 0.945053i \(0.393990\pi\)
\(68\) −51.8975 −0.0925514
\(69\) −496.600 −0.866429
\(70\) −150.000 −0.256120
\(71\) 340.677 0.569449 0.284724 0.958609i \(-0.408098\pi\)
0.284724 + 0.958609i \(0.408098\pi\)
\(72\) 72.0000 0.117851
\(73\) 265.041 0.424941 0.212470 0.977167i \(-0.431849\pi\)
0.212470 + 0.977167i \(0.431849\pi\)
\(74\) −74.0000 −0.116248
\(75\) 75.0000 0.115470
\(76\) 186.789 0.281924
\(77\) 401.769 0.594622
\(78\) −342.307 −0.496906
\(79\) 78.9384 0.112421 0.0562105 0.998419i \(-0.482098\pi\)
0.0562105 + 0.998419i \(0.482098\pi\)
\(80\) 80.0000 0.111803
\(81\) 81.0000 0.111111
\(82\) −600.543 −0.808767
\(83\) −1198.26 −1.58465 −0.792327 0.610097i \(-0.791130\pi\)
−0.792327 + 0.610097i \(0.791130\pi\)
\(84\) −180.000 −0.233805
\(85\) −64.8719 −0.0827805
\(86\) 60.9432 0.0764149
\(87\) 494.553 0.609445
\(88\) −214.277 −0.259568
\(89\) 68.9585 0.0821302 0.0410651 0.999156i \(-0.486925\pi\)
0.0410651 + 0.999156i \(0.486925\pi\)
\(90\) 90.0000 0.105409
\(91\) 855.769 0.985813
\(92\) −662.133 −0.750349
\(93\) −886.600 −0.988560
\(94\) −270.964 −0.297317
\(95\) 233.487 0.252160
\(96\) 96.0000 0.102062
\(97\) 862.211 0.902518 0.451259 0.892393i \(-0.350975\pi\)
0.451259 + 0.892393i \(0.350975\pi\)
\(98\) −236.000 −0.243261
\(99\) −241.062 −0.244723
\(100\) 100.000 0.100000
\(101\) −127.107 −0.125224 −0.0626122 0.998038i \(-0.519943\pi\)
−0.0626122 + 0.998038i \(0.519943\pi\)
\(102\) −77.8463 −0.0755679
\(103\) 608.928 0.582519 0.291260 0.956644i \(-0.405926\pi\)
0.291260 + 0.956644i \(0.405926\pi\)
\(104\) −456.410 −0.430333
\(105\) −225.000 −0.209121
\(106\) 489.230 0.448285
\(107\) 296.492 0.267878 0.133939 0.990990i \(-0.457237\pi\)
0.133939 + 0.990990i \(0.457237\pi\)
\(108\) 108.000 0.0962250
\(109\) −136.605 −0.120040 −0.0600199 0.998197i \(-0.519116\pi\)
−0.0600199 + 0.998197i \(0.519116\pi\)
\(110\) −267.846 −0.232165
\(111\) −111.000 −0.0949158
\(112\) −240.000 −0.202481
\(113\) 267.297 0.222524 0.111262 0.993791i \(-0.464511\pi\)
0.111262 + 0.993791i \(0.464511\pi\)
\(114\) 280.184 0.230190
\(115\) −827.666 −0.671133
\(116\) 659.404 0.527795
\(117\) −513.461 −0.405722
\(118\) −1243.21 −0.969887
\(119\) 194.616 0.149919
\(120\) 120.000 0.0912871
\(121\) −613.584 −0.460995
\(122\) −549.097 −0.407483
\(123\) −900.814 −0.660355
\(124\) −1182.13 −0.856118
\(125\) 125.000 0.0894427
\(126\) −270.000 −0.190901
\(127\) 1521.61 1.06316 0.531580 0.847008i \(-0.321598\pi\)
0.531580 + 0.847008i \(0.321598\pi\)
\(128\) 128.000 0.0883883
\(129\) 91.4148 0.0623925
\(130\) −570.512 −0.384902
\(131\) −1549.88 −1.03369 −0.516846 0.856078i \(-0.672894\pi\)
−0.516846 + 0.856078i \(0.672894\pi\)
\(132\) −321.416 −0.211937
\(133\) −700.461 −0.456674
\(134\) 717.148 0.462330
\(135\) 135.000 0.0860663
\(136\) −103.795 −0.0654437
\(137\) −1591.79 −0.992673 −0.496336 0.868130i \(-0.665322\pi\)
−0.496336 + 0.868130i \(0.665322\pi\)
\(138\) −993.199 −0.612658
\(139\) −2311.78 −1.41067 −0.705334 0.708875i \(-0.749203\pi\)
−0.705334 + 0.708875i \(0.749203\pi\)
\(140\) −300.000 −0.181104
\(141\) −406.446 −0.242758
\(142\) 681.353 0.402661
\(143\) 1528.10 0.893607
\(144\) 144.000 0.0833333
\(145\) 824.256 0.472074
\(146\) 530.082 0.300479
\(147\) −354.000 −0.198622
\(148\) −148.000 −0.0821995
\(149\) 1530.68 0.841599 0.420800 0.907154i \(-0.361750\pi\)
0.420800 + 0.907154i \(0.361750\pi\)
\(150\) 150.000 0.0816497
\(151\) −787.410 −0.424361 −0.212181 0.977230i \(-0.568056\pi\)
−0.212181 + 0.977230i \(0.568056\pi\)
\(152\) 373.579 0.199350
\(153\) −116.769 −0.0617009
\(154\) 803.539 0.420461
\(155\) −1477.67 −0.765736
\(156\) −684.615 −0.351366
\(157\) 537.965 0.273467 0.136733 0.990608i \(-0.456340\pi\)
0.136733 + 0.990608i \(0.456340\pi\)
\(158\) 157.877 0.0794937
\(159\) 733.845 0.366023
\(160\) 160.000 0.0790569
\(161\) 2483.00 1.21545
\(162\) 162.000 0.0785674
\(163\) 2494.09 1.19848 0.599240 0.800569i \(-0.295470\pi\)
0.599240 + 0.800569i \(0.295470\pi\)
\(164\) −1201.09 −0.571884
\(165\) −401.769 −0.189562
\(166\) −2396.52 −1.12052
\(167\) 1127.40 0.522402 0.261201 0.965284i \(-0.415881\pi\)
0.261201 + 0.965284i \(0.415881\pi\)
\(168\) −360.000 −0.165325
\(169\) 1057.84 0.481495
\(170\) −129.744 −0.0585347
\(171\) 420.276 0.187949
\(172\) 121.886 0.0540335
\(173\) −660.148 −0.290116 −0.145058 0.989423i \(-0.546337\pi\)
−0.145058 + 0.989423i \(0.546337\pi\)
\(174\) 989.107 0.430942
\(175\) −375.000 −0.161985
\(176\) −428.554 −0.183542
\(177\) −1864.81 −0.791910
\(178\) 137.917 0.0580748
\(179\) −432.744 −0.180697 −0.0903486 0.995910i \(-0.528798\pi\)
−0.0903486 + 0.995910i \(0.528798\pi\)
\(180\) 180.000 0.0745356
\(181\) −397.553 −0.163259 −0.0816296 0.996663i \(-0.526012\pi\)
−0.0816296 + 0.996663i \(0.526012\pi\)
\(182\) 1711.54 0.697075
\(183\) −823.645 −0.332708
\(184\) −1324.27 −0.530577
\(185\) −185.000 −0.0735215
\(186\) −1773.20 −0.699018
\(187\) 347.514 0.135897
\(188\) −541.928 −0.210235
\(189\) −405.000 −0.155870
\(190\) 466.974 0.178304
\(191\) 2933.78 1.11142 0.555710 0.831376i \(-0.312447\pi\)
0.555710 + 0.831376i \(0.312447\pi\)
\(192\) 192.000 0.0721688
\(193\) 1410.17 0.525941 0.262970 0.964804i \(-0.415298\pi\)
0.262970 + 0.964804i \(0.415298\pi\)
\(194\) 1724.42 0.638176
\(195\) −855.769 −0.314271
\(196\) −472.000 −0.172012
\(197\) 2820.29 1.01999 0.509994 0.860178i \(-0.329648\pi\)
0.509994 + 0.860178i \(0.329648\pi\)
\(198\) −482.123 −0.173045
\(199\) 994.003 0.354085 0.177043 0.984203i \(-0.443347\pi\)
0.177043 + 0.984203i \(0.443347\pi\)
\(200\) 200.000 0.0707107
\(201\) 1075.72 0.377491
\(202\) −254.215 −0.0885470
\(203\) −2472.77 −0.854947
\(204\) −155.693 −0.0534346
\(205\) −1501.36 −0.511509
\(206\) 1217.86 0.411903
\(207\) −1489.80 −0.500233
\(208\) −912.820 −0.304292
\(209\) −1250.77 −0.413960
\(210\) −450.000 −0.147871
\(211\) −1808.75 −0.590141 −0.295071 0.955475i \(-0.595343\pi\)
−0.295071 + 0.955475i \(0.595343\pi\)
\(212\) 978.460 0.316985
\(213\) 1022.03 0.328772
\(214\) 592.983 0.189418
\(215\) 152.358 0.0483290
\(216\) 216.000 0.0680414
\(217\) 4433.00 1.38678
\(218\) −273.209 −0.0848810
\(219\) 795.123 0.245340
\(220\) −535.693 −0.164165
\(221\) 740.204 0.225301
\(222\) −222.000 −0.0671156
\(223\) −1922.28 −0.577245 −0.288622 0.957443i \(-0.593197\pi\)
−0.288622 + 0.957443i \(0.593197\pi\)
\(224\) −480.000 −0.143176
\(225\) 225.000 0.0666667
\(226\) 534.594 0.157348
\(227\) −5752.35 −1.68192 −0.840962 0.541095i \(-0.818010\pi\)
−0.840962 + 0.541095i \(0.818010\pi\)
\(228\) 560.368 0.162769
\(229\) −5578.18 −1.60968 −0.804840 0.593492i \(-0.797749\pi\)
−0.804840 + 0.593492i \(0.797749\pi\)
\(230\) −1655.33 −0.474563
\(231\) 1205.31 0.343305
\(232\) 1318.81 0.373207
\(233\) 970.899 0.272986 0.136493 0.990641i \(-0.456417\pi\)
0.136493 + 0.990641i \(0.456417\pi\)
\(234\) −1026.92 −0.286889
\(235\) −677.410 −0.188040
\(236\) −2486.42 −0.685814
\(237\) 236.815 0.0649063
\(238\) 389.231 0.106009
\(239\) −2930.18 −0.793044 −0.396522 0.918025i \(-0.629783\pi\)
−0.396522 + 0.918025i \(0.629783\pi\)
\(240\) 240.000 0.0645497
\(241\) −3231.34 −0.863688 −0.431844 0.901948i \(-0.642137\pi\)
−0.431844 + 0.901948i \(0.642137\pi\)
\(242\) −1227.17 −0.325972
\(243\) 243.000 0.0641500
\(244\) −1098.19 −0.288134
\(245\) −590.000 −0.153852
\(246\) −1801.63 −0.466942
\(247\) −2664.14 −0.686297
\(248\) −2364.27 −0.605367
\(249\) −3594.78 −0.914900
\(250\) 250.000 0.0632456
\(251\) −3532.50 −0.888324 −0.444162 0.895947i \(-0.646499\pi\)
−0.444162 + 0.895947i \(0.646499\pi\)
\(252\) −540.000 −0.134987
\(253\) 4433.75 1.10177
\(254\) 3043.23 0.751768
\(255\) −194.616 −0.0477933
\(256\) 256.000 0.0625000
\(257\) 763.609 0.185341 0.0926704 0.995697i \(-0.470460\pi\)
0.0926704 + 0.995697i \(0.470460\pi\)
\(258\) 182.830 0.0441181
\(259\) 555.000 0.133151
\(260\) −1141.02 −0.272167
\(261\) 1483.66 0.351863
\(262\) −3099.76 −0.730931
\(263\) −3670.37 −0.860549 −0.430275 0.902698i \(-0.641583\pi\)
−0.430275 + 0.902698i \(0.641583\pi\)
\(264\) −642.831 −0.149862
\(265\) 1223.07 0.283520
\(266\) −1400.92 −0.322917
\(267\) 206.875 0.0474179
\(268\) 1434.30 0.326916
\(269\) 4925.90 1.11650 0.558248 0.829674i \(-0.311474\pi\)
0.558248 + 0.829674i \(0.311474\pi\)
\(270\) 270.000 0.0608581
\(271\) 5433.00 1.21783 0.608914 0.793236i \(-0.291605\pi\)
0.608914 + 0.793236i \(0.291605\pi\)
\(272\) −207.590 −0.0462757
\(273\) 2567.31 0.569159
\(274\) −3183.59 −0.701926
\(275\) −669.616 −0.146834
\(276\) −1986.40 −0.433214
\(277\) 330.030 0.0715870 0.0357935 0.999359i \(-0.488604\pi\)
0.0357935 + 0.999359i \(0.488604\pi\)
\(278\) −4623.57 −0.997493
\(279\) −2659.80 −0.570746
\(280\) −600.000 −0.128060
\(281\) 6764.78 1.43613 0.718065 0.695976i \(-0.245028\pi\)
0.718065 + 0.695976i \(0.245028\pi\)
\(282\) −812.892 −0.171656
\(283\) 889.783 0.186898 0.0934490 0.995624i \(-0.470211\pi\)
0.0934490 + 0.995624i \(0.470211\pi\)
\(284\) 1362.71 0.284724
\(285\) 700.461 0.145585
\(286\) 3056.19 0.631876
\(287\) 4504.07 0.926366
\(288\) 288.000 0.0589256
\(289\) −4744.67 −0.965737
\(290\) 1648.51 0.333807
\(291\) 2586.63 0.521069
\(292\) 1060.16 0.212470
\(293\) 7552.67 1.50591 0.752955 0.658072i \(-0.228628\pi\)
0.752955 + 0.658072i \(0.228628\pi\)
\(294\) −708.000 −0.140447
\(295\) −3108.02 −0.613410
\(296\) −296.000 −0.0581238
\(297\) −723.185 −0.141291
\(298\) 3061.36 0.595101
\(299\) 9443.88 1.82660
\(300\) 300.000 0.0577350
\(301\) −457.074 −0.0875260
\(302\) −1574.82 −0.300069
\(303\) −381.322 −0.0722983
\(304\) 747.158 0.140962
\(305\) −1372.74 −0.257715
\(306\) −233.539 −0.0436292
\(307\) −8377.27 −1.55738 −0.778691 0.627408i \(-0.784116\pi\)
−0.778691 + 0.627408i \(0.784116\pi\)
\(308\) 1607.08 0.297311
\(309\) 1826.78 0.336318
\(310\) −2955.33 −0.541457
\(311\) 7585.96 1.38315 0.691576 0.722304i \(-0.256917\pi\)
0.691576 + 0.722304i \(0.256917\pi\)
\(312\) −1369.23 −0.248453
\(313\) −1313.91 −0.237274 −0.118637 0.992938i \(-0.537853\pi\)
−0.118637 + 0.992938i \(0.537853\pi\)
\(314\) 1075.93 0.193370
\(315\) −675.000 −0.120736
\(316\) 315.753 0.0562105
\(317\) 2869.77 0.508462 0.254231 0.967143i \(-0.418178\pi\)
0.254231 + 0.967143i \(0.418178\pi\)
\(318\) 1467.69 0.258817
\(319\) −4415.48 −0.774982
\(320\) 320.000 0.0559017
\(321\) 889.475 0.154659
\(322\) 4966.00 0.859454
\(323\) −605.869 −0.104370
\(324\) 324.000 0.0555556
\(325\) −1426.28 −0.243433
\(326\) 4988.18 0.847453
\(327\) −409.814 −0.0693051
\(328\) −2402.17 −0.404383
\(329\) 2032.23 0.340549
\(330\) −803.539 −0.134040
\(331\) 1761.70 0.292544 0.146272 0.989244i \(-0.453273\pi\)
0.146272 + 0.989244i \(0.453273\pi\)
\(332\) −4793.04 −0.792327
\(333\) −333.000 −0.0547997
\(334\) 2254.81 0.369394
\(335\) 1792.87 0.292403
\(336\) −720.000 −0.116902
\(337\) 2211.28 0.357437 0.178718 0.983900i \(-0.442805\pi\)
0.178718 + 0.983900i \(0.442805\pi\)
\(338\) 2115.69 0.340469
\(339\) 801.891 0.128474
\(340\) −259.488 −0.0413903
\(341\) 7915.75 1.25707
\(342\) 840.553 0.132900
\(343\) 6915.00 1.08856
\(344\) 243.773 0.0382074
\(345\) −2483.00 −0.387479
\(346\) −1320.30 −0.205143
\(347\) −8171.18 −1.26413 −0.632063 0.774917i \(-0.717792\pi\)
−0.632063 + 0.774917i \(0.717792\pi\)
\(348\) 1978.21 0.304722
\(349\) 4176.79 0.640626 0.320313 0.947312i \(-0.396212\pi\)
0.320313 + 0.947312i \(0.396212\pi\)
\(350\) −750.000 −0.114541
\(351\) −1540.38 −0.234244
\(352\) −857.108 −0.129784
\(353\) 1495.33 0.225463 0.112731 0.993626i \(-0.464040\pi\)
0.112731 + 0.993626i \(0.464040\pi\)
\(354\) −3729.63 −0.559965
\(355\) 1703.38 0.254665
\(356\) 275.834 0.0410651
\(357\) 583.847 0.0865559
\(358\) −865.488 −0.127772
\(359\) 1103.46 0.162224 0.0811120 0.996705i \(-0.474153\pi\)
0.0811120 + 0.996705i \(0.474153\pi\)
\(360\) 360.000 0.0527046
\(361\) −4678.36 −0.682075
\(362\) −795.107 −0.115442
\(363\) −1840.75 −0.266155
\(364\) 3423.07 0.492906
\(365\) 1325.20 0.190039
\(366\) −1647.29 −0.235260
\(367\) −4983.52 −0.708821 −0.354411 0.935090i \(-0.615319\pi\)
−0.354411 + 0.935090i \(0.615319\pi\)
\(368\) −2648.53 −0.375175
\(369\) −2702.44 −0.381256
\(370\) −370.000 −0.0519875
\(371\) −3669.22 −0.513468
\(372\) −3546.40 −0.494280
\(373\) −1391.91 −0.193219 −0.0966093 0.995322i \(-0.530800\pi\)
−0.0966093 + 0.995322i \(0.530800\pi\)
\(374\) 695.028 0.0960936
\(375\) 375.000 0.0516398
\(376\) −1083.86 −0.148659
\(377\) −9404.96 −1.28483
\(378\) −810.000 −0.110217
\(379\) 6168.03 0.835964 0.417982 0.908455i \(-0.362738\pi\)
0.417982 + 0.908455i \(0.362738\pi\)
\(380\) 933.947 0.126080
\(381\) 4564.84 0.613816
\(382\) 5867.57 0.785892
\(383\) 3021.56 0.403119 0.201559 0.979476i \(-0.435399\pi\)
0.201559 + 0.979476i \(0.435399\pi\)
\(384\) 384.000 0.0510310
\(385\) 2008.85 0.265923
\(386\) 2820.35 0.371896
\(387\) 274.245 0.0360223
\(388\) 3448.84 0.451259
\(389\) −1304.45 −0.170021 −0.0850107 0.996380i \(-0.527092\pi\)
−0.0850107 + 0.996380i \(0.527092\pi\)
\(390\) −1711.54 −0.222223
\(391\) 2147.69 0.277784
\(392\) −944.000 −0.121631
\(393\) −4649.64 −0.596803
\(394\) 5640.58 0.721240
\(395\) 394.692 0.0502762
\(396\) −964.247 −0.122362
\(397\) −581.119 −0.0734648 −0.0367324 0.999325i \(-0.511695\pi\)
−0.0367324 + 0.999325i \(0.511695\pi\)
\(398\) 1988.01 0.250376
\(399\) −2101.38 −0.263661
\(400\) 400.000 0.0500000
\(401\) −280.212 −0.0348956 −0.0174478 0.999848i \(-0.505554\pi\)
−0.0174478 + 0.999848i \(0.505554\pi\)
\(402\) 2151.44 0.266926
\(403\) 16860.5 2.08408
\(404\) −508.429 −0.0626122
\(405\) 405.000 0.0496904
\(406\) −4945.53 −0.604539
\(407\) 991.031 0.120697
\(408\) −311.385 −0.0377840
\(409\) 4398.97 0.531822 0.265911 0.963998i \(-0.414327\pi\)
0.265911 + 0.963998i \(0.414327\pi\)
\(410\) −3002.71 −0.361692
\(411\) −4775.38 −0.573120
\(412\) 2435.71 0.291260
\(413\) 9324.07 1.11091
\(414\) −2979.60 −0.353718
\(415\) −5991.31 −0.708679
\(416\) −1825.64 −0.215167
\(417\) −6935.35 −0.814450
\(418\) −2501.54 −0.292714
\(419\) −1105.83 −0.128934 −0.0644669 0.997920i \(-0.520535\pi\)
−0.0644669 + 0.997920i \(0.520535\pi\)
\(420\) −900.000 −0.104561
\(421\) −97.9803 −0.0113427 −0.00567134 0.999984i \(-0.501805\pi\)
−0.00567134 + 0.999984i \(0.501805\pi\)
\(422\) −3617.51 −0.417293
\(423\) −1219.34 −0.140157
\(424\) 1956.92 0.224143
\(425\) −324.359 −0.0370206
\(426\) 2044.06 0.232477
\(427\) 4118.23 0.466733
\(428\) 1185.97 0.133939
\(429\) 4584.29 0.515924
\(430\) 304.716 0.0341738
\(431\) −7923.81 −0.885560 −0.442780 0.896630i \(-0.646008\pi\)
−0.442780 + 0.896630i \(0.646008\pi\)
\(432\) 432.000 0.0481125
\(433\) −3310.70 −0.367442 −0.183721 0.982978i \(-0.558814\pi\)
−0.183721 + 0.982978i \(0.558814\pi\)
\(434\) 8866.00 0.980603
\(435\) 2472.77 0.272552
\(436\) −546.418 −0.0600199
\(437\) −7729.97 −0.846166
\(438\) 1590.25 0.173481
\(439\) 14667.0 1.59458 0.797289 0.603598i \(-0.206267\pi\)
0.797289 + 0.603598i \(0.206267\pi\)
\(440\) −1071.39 −0.116082
\(441\) −1062.00 −0.114674
\(442\) 1480.41 0.159312
\(443\) 10521.6 1.12844 0.564219 0.825625i \(-0.309177\pi\)
0.564219 + 0.825625i \(0.309177\pi\)
\(444\) −444.000 −0.0474579
\(445\) 344.792 0.0367297
\(446\) −3844.57 −0.408174
\(447\) 4592.04 0.485898
\(448\) −960.000 −0.101240
\(449\) −8576.96 −0.901496 −0.450748 0.892651i \(-0.648843\pi\)
−0.450748 + 0.892651i \(0.648843\pi\)
\(450\) 450.000 0.0471405
\(451\) 8042.66 0.839721
\(452\) 1069.19 0.111262
\(453\) −2362.23 −0.245005
\(454\) −11504.7 −1.18930
\(455\) 4278.84 0.440869
\(456\) 1120.74 0.115095
\(457\) −6264.65 −0.641243 −0.320622 0.947207i \(-0.603892\pi\)
−0.320622 + 0.947207i \(0.603892\pi\)
\(458\) −11156.4 −1.13822
\(459\) −350.308 −0.0356231
\(460\) −3310.66 −0.335566
\(461\) 1440.59 0.145542 0.0727709 0.997349i \(-0.476816\pi\)
0.0727709 + 0.997349i \(0.476816\pi\)
\(462\) 2410.62 0.242753
\(463\) 241.973 0.0242882 0.0121441 0.999926i \(-0.496134\pi\)
0.0121441 + 0.999926i \(0.496134\pi\)
\(464\) 2637.62 0.263897
\(465\) −4433.00 −0.442098
\(466\) 1941.80 0.193030
\(467\) 7604.45 0.753516 0.376758 0.926312i \(-0.377039\pi\)
0.376758 + 0.926312i \(0.377039\pi\)
\(468\) −2053.84 −0.202861
\(469\) −5378.61 −0.529555
\(470\) −1354.82 −0.132964
\(471\) 1613.90 0.157886
\(472\) −4972.84 −0.484944
\(473\) −816.171 −0.0793395
\(474\) 473.630 0.0458957
\(475\) 1167.43 0.112770
\(476\) 778.463 0.0749596
\(477\) 2201.53 0.211324
\(478\) −5860.36 −0.560767
\(479\) 15776.1 1.50486 0.752430 0.658672i \(-0.228882\pi\)
0.752430 + 0.658672i \(0.228882\pi\)
\(480\) 480.000 0.0456435
\(481\) 2110.90 0.200101
\(482\) −6462.67 −0.610719
\(483\) 7449.00 0.701741
\(484\) −2454.34 −0.230497
\(485\) 4311.05 0.403618
\(486\) 486.000 0.0453609
\(487\) −12752.9 −1.18663 −0.593316 0.804970i \(-0.702181\pi\)
−0.593316 + 0.804970i \(0.702181\pi\)
\(488\) −2196.39 −0.203741
\(489\) 7482.27 0.691943
\(490\) −1180.00 −0.108790
\(491\) 1135.95 0.104409 0.0522046 0.998636i \(-0.483375\pi\)
0.0522046 + 0.998636i \(0.483375\pi\)
\(492\) −3603.26 −0.330178
\(493\) −2138.84 −0.195393
\(494\) −5328.29 −0.485285
\(495\) −1205.31 −0.109444
\(496\) −4728.53 −0.428059
\(497\) −5110.15 −0.461210
\(498\) −7189.57 −0.646932
\(499\) −5259.34 −0.471825 −0.235912 0.971774i \(-0.575808\pi\)
−0.235912 + 0.971774i \(0.575808\pi\)
\(500\) 500.000 0.0447214
\(501\) 3382.21 0.301609
\(502\) −7065.00 −0.628140
\(503\) 22139.7 1.96255 0.981275 0.192614i \(-0.0616964\pi\)
0.981275 + 0.192614i \(0.0616964\pi\)
\(504\) −1080.00 −0.0954504
\(505\) −635.537 −0.0560020
\(506\) 8867.49 0.779067
\(507\) 3173.53 0.277991
\(508\) 6086.46 0.531580
\(509\) −13693.7 −1.19246 −0.596228 0.802815i \(-0.703335\pi\)
−0.596228 + 0.802815i \(0.703335\pi\)
\(510\) −389.231 −0.0337950
\(511\) −3975.61 −0.344170
\(512\) 512.000 0.0441942
\(513\) 1260.83 0.108513
\(514\) 1527.22 0.131056
\(515\) 3044.64 0.260510
\(516\) 365.659 0.0311962
\(517\) 3628.83 0.308696
\(518\) 1110.00 0.0941517
\(519\) −1980.44 −0.167499
\(520\) −2282.05 −0.192451
\(521\) 13384.4 1.12549 0.562746 0.826630i \(-0.309745\pi\)
0.562746 + 0.826630i \(0.309745\pi\)
\(522\) 2967.32 0.248805
\(523\) −11324.1 −0.946781 −0.473391 0.880853i \(-0.656970\pi\)
−0.473391 + 0.880853i \(0.656970\pi\)
\(524\) −6199.52 −0.516846
\(525\) −1125.00 −0.0935220
\(526\) −7340.73 −0.608500
\(527\) 3834.36 0.316940
\(528\) −1285.66 −0.105968
\(529\) 15234.3 1.25210
\(530\) 2446.15 0.200479
\(531\) −5594.44 −0.457209
\(532\) −2801.84 −0.228337
\(533\) 17130.9 1.39216
\(534\) 413.751 0.0335295
\(535\) 1482.46 0.119799
\(536\) 2868.59 0.231165
\(537\) −1298.23 −0.104326
\(538\) 9851.80 0.789482
\(539\) 3160.59 0.252572
\(540\) 540.000 0.0430331
\(541\) −8718.79 −0.692884 −0.346442 0.938071i \(-0.612610\pi\)
−0.346442 + 0.938071i \(0.612610\pi\)
\(542\) 10866.0 0.861134
\(543\) −1192.66 −0.0942577
\(544\) −415.180 −0.0327219
\(545\) −683.023 −0.0536835
\(546\) 5134.61 0.402456
\(547\) 16618.2 1.29898 0.649490 0.760370i \(-0.274982\pi\)
0.649490 + 0.760370i \(0.274982\pi\)
\(548\) −6367.18 −0.496336
\(549\) −2470.94 −0.192089
\(550\) −1339.23 −0.103827
\(551\) 7698.11 0.595192
\(552\) −3972.80 −0.306329
\(553\) −1184.08 −0.0910525
\(554\) 660.061 0.0506197
\(555\) −555.000 −0.0424476
\(556\) −9247.13 −0.705334
\(557\) −3006.33 −0.228693 −0.114347 0.993441i \(-0.536477\pi\)
−0.114347 + 0.993441i \(0.536477\pi\)
\(558\) −5319.60 −0.403578
\(559\) −1738.44 −0.131535
\(560\) −1200.00 −0.0905522
\(561\) 1042.54 0.0784601
\(562\) 13529.6 1.01550
\(563\) 13739.2 1.02849 0.514245 0.857643i \(-0.328072\pi\)
0.514245 + 0.857643i \(0.328072\pi\)
\(564\) −1625.78 −0.121379
\(565\) 1336.49 0.0995157
\(566\) 1779.57 0.132157
\(567\) −1215.00 −0.0899915
\(568\) 2725.41 0.201331
\(569\) −15449.8 −1.13829 −0.569146 0.822236i \(-0.692726\pi\)
−0.569146 + 0.822236i \(0.692726\pi\)
\(570\) 1400.92 0.102944
\(571\) 17518.4 1.28393 0.641963 0.766735i \(-0.278120\pi\)
0.641963 + 0.766735i \(0.278120\pi\)
\(572\) 6112.39 0.446804
\(573\) 8801.35 0.641678
\(574\) 9008.14 0.655040
\(575\) −4138.33 −0.300140
\(576\) 576.000 0.0416667
\(577\) −2617.70 −0.188867 −0.0944337 0.995531i \(-0.530104\pi\)
−0.0944337 + 0.995531i \(0.530104\pi\)
\(578\) −9489.33 −0.682879
\(579\) 4230.52 0.303652
\(580\) 3297.02 0.236037
\(581\) 17973.9 1.28345
\(582\) 5173.26 0.368451
\(583\) −6551.92 −0.465442
\(584\) 2120.33 0.150239
\(585\) −2567.31 −0.181445
\(586\) 15105.3 1.06484
\(587\) 6984.06 0.491078 0.245539 0.969387i \(-0.421035\pi\)
0.245539 + 0.969387i \(0.421035\pi\)
\(588\) −1416.00 −0.0993110
\(589\) −13800.6 −0.965441
\(590\) −6216.05 −0.433747
\(591\) 8460.88 0.588890
\(592\) −592.000 −0.0410997
\(593\) 9635.18 0.667234 0.333617 0.942709i \(-0.391731\pi\)
0.333617 + 0.942709i \(0.391731\pi\)
\(594\) −1446.37 −0.0999079
\(595\) 973.078 0.0670459
\(596\) 6122.73 0.420800
\(597\) 2982.01 0.204431
\(598\) 18887.8 1.29160
\(599\) −9031.78 −0.616074 −0.308037 0.951374i \(-0.599672\pi\)
−0.308037 + 0.951374i \(0.599672\pi\)
\(600\) 600.000 0.0408248
\(601\) −13888.4 −0.942631 −0.471315 0.881965i \(-0.656221\pi\)
−0.471315 + 0.881965i \(0.656221\pi\)
\(602\) −914.148 −0.0618902
\(603\) 3227.17 0.217944
\(604\) −3149.64 −0.212181
\(605\) −3067.92 −0.206163
\(606\) −762.644 −0.0511226
\(607\) −25762.8 −1.72270 −0.861350 0.508012i \(-0.830381\pi\)
−0.861350 + 0.508012i \(0.830381\pi\)
\(608\) 1494.32 0.0996752
\(609\) −7418.30 −0.493604
\(610\) −2745.48 −0.182232
\(611\) 7729.42 0.511782
\(612\) −467.078 −0.0308505
\(613\) −3581.26 −0.235964 −0.117982 0.993016i \(-0.537642\pi\)
−0.117982 + 0.993016i \(0.537642\pi\)
\(614\) −16754.5 −1.10123
\(615\) −4504.07 −0.295320
\(616\) 3214.16 0.210231
\(617\) 21318.3 1.39099 0.695496 0.718530i \(-0.255185\pi\)
0.695496 + 0.718530i \(0.255185\pi\)
\(618\) 3653.57 0.237812
\(619\) −18295.6 −1.18798 −0.593992 0.804471i \(-0.702449\pi\)
−0.593992 + 0.804471i \(0.702449\pi\)
\(620\) −5910.66 −0.382868
\(621\) −4469.40 −0.288810
\(622\) 15171.9 0.978036
\(623\) −1034.38 −0.0665192
\(624\) −2738.46 −0.175683
\(625\) 625.000 0.0400000
\(626\) −2627.83 −0.167778
\(627\) −3752.31 −0.239000
\(628\) 2151.86 0.136733
\(629\) 480.052 0.0304307
\(630\) −1350.00 −0.0853735
\(631\) −23436.2 −1.47858 −0.739288 0.673389i \(-0.764838\pi\)
−0.739288 + 0.673389i \(0.764838\pi\)
\(632\) 631.507 0.0397468
\(633\) −5426.26 −0.340718
\(634\) 5739.55 0.359537
\(635\) 7608.07 0.475460
\(636\) 2935.38 0.183012
\(637\) 6732.05 0.418734
\(638\) −8830.95 −0.547995
\(639\) 3066.09 0.189816
\(640\) 640.000 0.0395285
\(641\) 25842.2 1.59236 0.796181 0.605059i \(-0.206850\pi\)
0.796181 + 0.605059i \(0.206850\pi\)
\(642\) 1778.95 0.109361
\(643\) −16165.6 −0.991459 −0.495730 0.868477i \(-0.665099\pi\)
−0.495730 + 0.868477i \(0.665099\pi\)
\(644\) 9931.99 0.607726
\(645\) 457.074 0.0279028
\(646\) −1211.74 −0.0738006
\(647\) 19181.1 1.16551 0.582757 0.812646i \(-0.301974\pi\)
0.582757 + 0.812646i \(0.301974\pi\)
\(648\) 648.000 0.0392837
\(649\) 16649.4 1.00701
\(650\) −2852.56 −0.172133
\(651\) 13299.0 0.800659
\(652\) 9976.36 0.599240
\(653\) 15846.6 0.949656 0.474828 0.880079i \(-0.342510\pi\)
0.474828 + 0.880079i \(0.342510\pi\)
\(654\) −819.628 −0.0490061
\(655\) −7749.40 −0.462281
\(656\) −4804.34 −0.285942
\(657\) 2385.37 0.141647
\(658\) 4064.46 0.240804
\(659\) 8331.36 0.492479 0.246240 0.969209i \(-0.420805\pi\)
0.246240 + 0.969209i \(0.420805\pi\)
\(660\) −1607.08 −0.0947809
\(661\) 23218.8 1.36627 0.683136 0.730291i \(-0.260615\pi\)
0.683136 + 0.730291i \(0.260615\pi\)
\(662\) 3523.41 0.206860
\(663\) 2220.61 0.130078
\(664\) −9586.09 −0.560260
\(665\) −3502.30 −0.204231
\(666\) −666.000 −0.0387492
\(667\) −27288.3 −1.58412
\(668\) 4509.62 0.261201
\(669\) −5766.85 −0.333272
\(670\) 3585.74 0.206760
\(671\) 7353.68 0.423078
\(672\) −1440.00 −0.0826625
\(673\) −1004.45 −0.0575313 −0.0287656 0.999586i \(-0.509158\pi\)
−0.0287656 + 0.999586i \(0.509158\pi\)
\(674\) 4422.57 0.252746
\(675\) 675.000 0.0384900
\(676\) 4231.38 0.240748
\(677\) −2250.83 −0.127779 −0.0638895 0.997957i \(-0.520351\pi\)
−0.0638895 + 0.997957i \(0.520351\pi\)
\(678\) 1603.78 0.0908450
\(679\) −12933.2 −0.730971
\(680\) −518.975 −0.0292673
\(681\) −17257.0 −0.971059
\(682\) 15831.5 0.888885
\(683\) −14575.9 −0.816592 −0.408296 0.912850i \(-0.633877\pi\)
−0.408296 + 0.912850i \(0.633877\pi\)
\(684\) 1681.11 0.0939747
\(685\) −7958.97 −0.443937
\(686\) 13830.0 0.769726
\(687\) −16734.6 −0.929349
\(688\) 487.546 0.0270167
\(689\) −13955.6 −0.771648
\(690\) −4966.00 −0.273989
\(691\) −14486.8 −0.797545 −0.398772 0.917050i \(-0.630564\pi\)
−0.398772 + 0.917050i \(0.630564\pi\)
\(692\) −2640.59 −0.145058
\(693\) 3615.92 0.198207
\(694\) −16342.4 −0.893872
\(695\) −11558.9 −0.630870
\(696\) 3956.43 0.215471
\(697\) 3895.84 0.211715
\(698\) 8353.58 0.452991
\(699\) 2912.70 0.157608
\(700\) −1500.00 −0.0809924
\(701\) 12920.4 0.696141 0.348071 0.937468i \(-0.386837\pi\)
0.348071 + 0.937468i \(0.386837\pi\)
\(702\) −3080.77 −0.165635
\(703\) −1727.80 −0.0926960
\(704\) −1714.22 −0.0917712
\(705\) −2032.23 −0.108565
\(706\) 2990.66 0.159426
\(707\) 1906.61 0.101422
\(708\) −7459.26 −0.395955
\(709\) −6570.90 −0.348061 −0.174031 0.984740i \(-0.555679\pi\)
−0.174031 + 0.984740i \(0.555679\pi\)
\(710\) 3406.77 0.180076
\(711\) 710.445 0.0374737
\(712\) 551.668 0.0290374
\(713\) 48920.6 2.56955
\(714\) 1167.69 0.0612043
\(715\) 7640.48 0.399633
\(716\) −1730.98 −0.0903486
\(717\) −8790.54 −0.457864
\(718\) 2206.92 0.114710
\(719\) −9874.49 −0.512179 −0.256089 0.966653i \(-0.582434\pi\)
−0.256089 + 0.966653i \(0.582434\pi\)
\(720\) 720.000 0.0372678
\(721\) −9133.92 −0.471796
\(722\) −9356.71 −0.482300
\(723\) −9694.01 −0.498650
\(724\) −1590.21 −0.0816296
\(725\) 4121.28 0.211118
\(726\) −3681.50 −0.188200
\(727\) 26800.8 1.36725 0.683623 0.729835i \(-0.260403\pi\)
0.683623 + 0.729835i \(0.260403\pi\)
\(728\) 6846.15 0.348537
\(729\) 729.000 0.0370370
\(730\) 2650.41 0.134378
\(731\) −395.350 −0.0200035
\(732\) −3294.58 −0.166354
\(733\) −6828.40 −0.344083 −0.172041 0.985090i \(-0.555036\pi\)
−0.172041 + 0.985090i \(0.555036\pi\)
\(734\) −9967.03 −0.501212
\(735\) −1770.00 −0.0888264
\(736\) −5297.06 −0.265289
\(737\) −9604.27 −0.480024
\(738\) −5404.89 −0.269589
\(739\) −1380.58 −0.0687219 −0.0343609 0.999409i \(-0.510940\pi\)
−0.0343609 + 0.999409i \(0.510940\pi\)
\(740\) −740.000 −0.0367607
\(741\) −7992.43 −0.396234
\(742\) −7338.45 −0.363077
\(743\) 30950.1 1.52820 0.764098 0.645100i \(-0.223184\pi\)
0.764098 + 0.645100i \(0.223184\pi\)
\(744\) −7092.80 −0.349509
\(745\) 7653.41 0.376375
\(746\) −2783.83 −0.136626
\(747\) −10784.3 −0.528218
\(748\) 1390.06 0.0679485
\(749\) −4447.38 −0.216961
\(750\) 750.000 0.0365148
\(751\) −27718.1 −1.34680 −0.673401 0.739277i \(-0.735167\pi\)
−0.673401 + 0.739277i \(0.735167\pi\)
\(752\) −2167.71 −0.105117
\(753\) −10597.5 −0.512874
\(754\) −18809.9 −0.908511
\(755\) −3937.05 −0.189780
\(756\) −1620.00 −0.0779350
\(757\) 21897.4 1.05136 0.525678 0.850684i \(-0.323812\pi\)
0.525678 + 0.850684i \(0.323812\pi\)
\(758\) 12336.1 0.591116
\(759\) 13301.2 0.636106
\(760\) 1867.89 0.0891522
\(761\) 24294.7 1.15727 0.578635 0.815587i \(-0.303586\pi\)
0.578635 + 0.815587i \(0.303586\pi\)
\(762\) 9129.69 0.434034
\(763\) 2049.07 0.0972232
\(764\) 11735.1 0.555710
\(765\) −583.847 −0.0275935
\(766\) 6043.12 0.285048
\(767\) 35463.3 1.66950
\(768\) 768.000 0.0360844
\(769\) −37156.2 −1.74238 −0.871189 0.490948i \(-0.836650\pi\)
−0.871189 + 0.490948i \(0.836650\pi\)
\(770\) 4017.69 0.188036
\(771\) 2290.83 0.107007
\(772\) 5640.70 0.262970
\(773\) −22294.5 −1.03736 −0.518680 0.854969i \(-0.673576\pi\)
−0.518680 + 0.854969i \(0.673576\pi\)
\(774\) 548.489 0.0254716
\(775\) −7388.33 −0.342447
\(776\) 6897.68 0.319088
\(777\) 1665.00 0.0768746
\(778\) −2608.90 −0.120223
\(779\) −14021.9 −0.644912
\(780\) −3423.07 −0.157136
\(781\) −9124.90 −0.418072
\(782\) 4295.38 0.196423
\(783\) 4450.98 0.203148
\(784\) −1888.00 −0.0860058
\(785\) 2689.83 0.122298
\(786\) −9299.29 −0.422003
\(787\) −43500.5 −1.97030 −0.985149 0.171699i \(-0.945074\pi\)
−0.985149 + 0.171699i \(0.945074\pi\)
\(788\) 11281.2 0.509994
\(789\) −11011.1 −0.496838
\(790\) 789.384 0.0355506
\(791\) −4009.46 −0.180227
\(792\) −1928.49 −0.0865227
\(793\) 15663.3 0.701414
\(794\) −1162.24 −0.0519474
\(795\) 3669.22 0.163691
\(796\) 3976.01 0.177043
\(797\) −36522.4 −1.62320 −0.811599 0.584215i \(-0.801403\pi\)
−0.811599 + 0.584215i \(0.801403\pi\)
\(798\) −4202.76 −0.186436
\(799\) 1757.79 0.0778302
\(800\) 800.000 0.0353553
\(801\) 620.626 0.0273767
\(802\) −560.424 −0.0246749
\(803\) −7099.02 −0.311979
\(804\) 4302.89 0.188745
\(805\) 12415.0 0.543566
\(806\) 33721.1 1.47367
\(807\) 14777.7 0.644609
\(808\) −1016.86 −0.0442735
\(809\) −14247.0 −0.619155 −0.309577 0.950874i \(-0.600188\pi\)
−0.309577 + 0.950874i \(0.600188\pi\)
\(810\) 810.000 0.0351364
\(811\) −39964.8 −1.73040 −0.865200 0.501427i \(-0.832808\pi\)
−0.865200 + 0.501427i \(0.832808\pi\)
\(812\) −9891.07 −0.427473
\(813\) 16299.0 0.703113
\(814\) 1982.06 0.0853455
\(815\) 12470.5 0.535976
\(816\) −622.770 −0.0267173
\(817\) 1422.94 0.0609333
\(818\) 8797.95 0.376055
\(819\) 7701.92 0.328604
\(820\) −6005.43 −0.255755
\(821\) 4118.14 0.175060 0.0875299 0.996162i \(-0.472103\pi\)
0.0875299 + 0.996162i \(0.472103\pi\)
\(822\) −9550.77 −0.405257
\(823\) −8340.10 −0.353241 −0.176621 0.984279i \(-0.556517\pi\)
−0.176621 + 0.984279i \(0.556517\pi\)
\(824\) 4871.42 0.205952
\(825\) −2008.85 −0.0847746
\(826\) 18648.1 0.785535
\(827\) 21269.1 0.894315 0.447158 0.894455i \(-0.352436\pi\)
0.447158 + 0.894455i \(0.352436\pi\)
\(828\) −5959.20 −0.250116
\(829\) −33984.8 −1.42381 −0.711906 0.702275i \(-0.752168\pi\)
−0.711906 + 0.702275i \(0.752168\pi\)
\(830\) −11982.6 −0.501111
\(831\) 990.091 0.0413308
\(832\) −3651.28 −0.152146
\(833\) 1530.98 0.0636797
\(834\) −13870.7 −0.575903
\(835\) 5637.02 0.233625
\(836\) −5003.09 −0.206980
\(837\) −7979.40 −0.329520
\(838\) −2211.66 −0.0911700
\(839\) −27279.6 −1.12252 −0.561262 0.827638i \(-0.689684\pi\)
−0.561262 + 0.827638i \(0.689684\pi\)
\(840\) −1800.00 −0.0739356
\(841\) 2786.89 0.114268
\(842\) −195.961 −0.00802048
\(843\) 20294.3 0.829150
\(844\) −7235.02 −0.295071
\(845\) 5289.22 0.215331
\(846\) −2438.68 −0.0991057
\(847\) 9203.76 0.373371
\(848\) 3913.84 0.158493
\(849\) 2669.35 0.107906
\(850\) −648.719 −0.0261775
\(851\) 6124.73 0.246713
\(852\) 4088.12 0.164386
\(853\) 24831.6 0.996738 0.498369 0.866965i \(-0.333932\pi\)
0.498369 + 0.866965i \(0.333932\pi\)
\(854\) 8236.45 0.330030
\(855\) 2101.38 0.0840535
\(856\) 2371.93 0.0947091
\(857\) −31072.0 −1.23851 −0.619253 0.785191i \(-0.712565\pi\)
−0.619253 + 0.785191i \(0.712565\pi\)
\(858\) 9168.58 0.364814
\(859\) −9614.51 −0.381889 −0.190945 0.981601i \(-0.561155\pi\)
−0.190945 + 0.981601i \(0.561155\pi\)
\(860\) 609.432 0.0241645
\(861\) 13512.2 0.534838
\(862\) −15847.6 −0.626186
\(863\) −9045.39 −0.356789 −0.178394 0.983959i \(-0.557090\pi\)
−0.178394 + 0.983959i \(0.557090\pi\)
\(864\) 864.000 0.0340207
\(865\) −3300.74 −0.129744
\(866\) −6621.41 −0.259820
\(867\) −14234.0 −0.557568
\(868\) 17732.0 0.693391
\(869\) −2114.33 −0.0825361
\(870\) 4945.53 0.192723
\(871\) −20457.1 −0.795824
\(872\) −1092.84 −0.0424405
\(873\) 7759.89 0.300839
\(874\) −15459.9 −0.598330
\(875\) −1875.00 −0.0724418
\(876\) 3180.49 0.122670
\(877\) −10014.0 −0.385574 −0.192787 0.981241i \(-0.561753\pi\)
−0.192787 + 0.981241i \(0.561753\pi\)
\(878\) 29334.1 1.12754
\(879\) 22658.0 0.869437
\(880\) −2142.77 −0.0820827
\(881\) 32799.0 1.25429 0.627143 0.778904i \(-0.284224\pi\)
0.627143 + 0.778904i \(0.284224\pi\)
\(882\) −2124.00 −0.0810871
\(883\) 7981.54 0.304191 0.152095 0.988366i \(-0.451398\pi\)
0.152095 + 0.988366i \(0.451398\pi\)
\(884\) 2960.82 0.112651
\(885\) −9324.07 −0.354153
\(886\) 21043.3 0.797926
\(887\) −35304.2 −1.33641 −0.668206 0.743976i \(-0.732938\pi\)
−0.668206 + 0.743976i \(0.732938\pi\)
\(888\) −888.000 −0.0335578
\(889\) −22824.2 −0.861079
\(890\) 689.585 0.0259718
\(891\) −2169.55 −0.0815744
\(892\) −7689.13 −0.288622
\(893\) −6326.65 −0.237081
\(894\) 9184.09 0.343582
\(895\) −2163.72 −0.0808102
\(896\) −1920.00 −0.0715878
\(897\) 28331.6 1.05459
\(898\) −17153.9 −0.637454
\(899\) −48719.0 −1.80742
\(900\) 900.000 0.0333333
\(901\) −3173.73 −0.117350
\(902\) 16085.3 0.593772
\(903\) −1371.22 −0.0505332
\(904\) 2138.38 0.0786741
\(905\) −1987.77 −0.0730117
\(906\) −4724.46 −0.173245
\(907\) −6843.62 −0.250539 −0.125269 0.992123i \(-0.539980\pi\)
−0.125269 + 0.992123i \(0.539980\pi\)
\(908\) −23009.4 −0.840962
\(909\) −1143.97 −0.0417414
\(910\) 8557.69 0.311741
\(911\) −18795.3 −0.683552 −0.341776 0.939781i \(-0.611028\pi\)
−0.341776 + 0.939781i \(0.611028\pi\)
\(912\) 2241.47 0.0813844
\(913\) 32095.0 1.16340
\(914\) −12529.3 −0.453427
\(915\) −4118.23 −0.148792
\(916\) −22312.7 −0.804840
\(917\) 23248.2 0.837212
\(918\) −700.616 −0.0251893
\(919\) −44917.0 −1.61227 −0.806134 0.591734i \(-0.798444\pi\)
−0.806134 + 0.591734i \(0.798444\pi\)
\(920\) −6621.33 −0.237281
\(921\) −25131.8 −0.899154
\(922\) 2881.17 0.102914
\(923\) −19436.0 −0.693114
\(924\) 4821.23 0.171652
\(925\) −925.000 −0.0328798
\(926\) 483.945 0.0171743
\(927\) 5480.35 0.194173
\(928\) 5275.24 0.186604
\(929\) −1382.40 −0.0488213 −0.0244107 0.999702i \(-0.507771\pi\)
−0.0244107 + 0.999702i \(0.507771\pi\)
\(930\) −8866.00 −0.312610
\(931\) −5510.29 −0.193977
\(932\) 3883.60 0.136493
\(933\) 22757.9 0.798563
\(934\) 15208.9 0.532816
\(935\) 1737.57 0.0607750
\(936\) −4107.69 −0.143444
\(937\) −33890.0 −1.18158 −0.590789 0.806826i \(-0.701184\pi\)
−0.590789 + 0.806826i \(0.701184\pi\)
\(938\) −10757.2 −0.374452
\(939\) −3941.74 −0.136990
\(940\) −2709.64 −0.0940199
\(941\) −28444.7 −0.985411 −0.492706 0.870196i \(-0.663992\pi\)
−0.492706 + 0.870196i \(0.663992\pi\)
\(942\) 3227.79 0.111642
\(943\) 49704.9 1.71645
\(944\) −9945.67 −0.342907
\(945\) −2025.00 −0.0697071
\(946\) −1632.34 −0.0561015
\(947\) −48462.6 −1.66296 −0.831480 0.555555i \(-0.812506\pi\)
−0.831480 + 0.555555i \(0.812506\pi\)
\(948\) 947.260 0.0324532
\(949\) −15120.9 −0.517224
\(950\) 2334.87 0.0797401
\(951\) 8609.32 0.293561
\(952\) 1556.93 0.0530044
\(953\) 52813.5 1.79517 0.897586 0.440840i \(-0.145320\pi\)
0.897586 + 0.440840i \(0.145320\pi\)
\(954\) 4403.07 0.149428
\(955\) 14668.9 0.497042
\(956\) −11720.7 −0.396522
\(957\) −13246.4 −0.447436
\(958\) 31552.2 1.06410
\(959\) 23876.9 0.803989
\(960\) 960.000 0.0322749
\(961\) 57548.9 1.93175
\(962\) 4221.79 0.141493
\(963\) 2668.43 0.0892926
\(964\) −12925.3 −0.431844
\(965\) 7050.87 0.235208
\(966\) 14898.0 0.496206
\(967\) −4569.66 −0.151965 −0.0759825 0.997109i \(-0.524209\pi\)
−0.0759825 + 0.997109i \(0.524209\pi\)
\(968\) −4908.67 −0.162986
\(969\) −1817.61 −0.0602580
\(970\) 8622.11 0.285401
\(971\) 9889.14 0.326836 0.163418 0.986557i \(-0.447748\pi\)
0.163418 + 0.986557i \(0.447748\pi\)
\(972\) 972.000 0.0320750
\(973\) 34676.7 1.14253
\(974\) −25505.8 −0.839075
\(975\) −4278.84 −0.140546
\(976\) −4392.78 −0.144067
\(977\) 12036.7 0.394153 0.197077 0.980388i \(-0.436855\pi\)
0.197077 + 0.980388i \(0.436855\pi\)
\(978\) 14964.5 0.489277
\(979\) −1847.03 −0.0602975
\(980\) −2360.00 −0.0769260
\(981\) −1229.44 −0.0400133
\(982\) 2271.91 0.0738284
\(983\) −48079.3 −1.56001 −0.780005 0.625773i \(-0.784784\pi\)
−0.780005 + 0.625773i \(0.784784\pi\)
\(984\) −7206.52 −0.233471
\(985\) 14101.5 0.456152
\(986\) −4277.68 −0.138163
\(987\) 6096.69 0.196616
\(988\) −10656.6 −0.343149
\(989\) −5044.07 −0.162176
\(990\) −2410.62 −0.0773883
\(991\) −31042.7 −0.995059 −0.497530 0.867447i \(-0.665759\pi\)
−0.497530 + 0.867447i \(0.665759\pi\)
\(992\) −9457.06 −0.302684
\(993\) 5285.11 0.168900
\(994\) −10220.3 −0.326125
\(995\) 4970.01 0.158352
\(996\) −14379.1 −0.457450
\(997\) 54044.7 1.71676 0.858382 0.513011i \(-0.171470\pi\)
0.858382 + 0.513011i \(0.171470\pi\)
\(998\) −10518.7 −0.333630
\(999\) −999.000 −0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1110.4.a.d.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1110.4.a.d.1.2 2 1.1 even 1 trivial