L(s) = 1 | + 2·3-s + 4-s + 2·7-s + 9-s + 2·12-s + 16-s − 12·19-s + 4·21-s + 25-s − 4·27-s + 2·28-s + 6·31-s + 36-s − 2·37-s − 2·43-s + 2·48-s − 11·49-s − 24·57-s − 30·61-s + 2·63-s + 64-s + 2·75-s − 12·76-s − 16·79-s − 11·81-s + 4·84-s + 12·93-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1/2·4-s + 0.755·7-s + 1/3·9-s + 0.577·12-s + 1/4·16-s − 2.75·19-s + 0.872·21-s + 1/5·25-s − 0.769·27-s + 0.377·28-s + 1.07·31-s + 1/6·36-s − 0.328·37-s − 0.304·43-s + 0.288·48-s − 1.57·49-s − 3.17·57-s − 3.84·61-s + 0.251·63-s + 1/8·64-s + 0.230·75-s − 1.37·76-s − 1.80·79-s − 1.22·81-s + 0.436·84-s + 1.24·93-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
−1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C1 | (1−T)(1+T) |
| 3 | C2 | 1−2T+pT2 |
| 5 | C1×C1 | (1−T)(1+T) |
| 37 | C1 | (1+T)2 |
good | 7 | C2 | (1−T+pT2)2 |
| 11 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 19 | C2 | (1+6T+pT2)2 |
| 23 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 29 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 31 | C2 | (1−3T+pT2)2 |
| 41 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 43 | C2 | (1+T+pT2)2 |
| 47 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 53 | C2 | (1−13T+pT2)(1+13T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1+15T+pT2)2 |
| 67 | C2 | (1+pT2)2 |
| 71 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 73 | C2 | (1+pT2)2 |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 89 | C2 | (1−18T+pT2)(1+18T+pT2) |
| 97 | C2 | (1+7T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.947480595907964918208604648618, −7.55947946358028496449425566831, −6.89931657836489782864864420449, −6.56405990058932844390013504676, −6.08056229568137165407273954903, −5.77272193873314481326296907642, −4.83332190202465636941309325541, −4.63919100492136925221940798677, −4.12586421650220620613319696777, −3.56154188220255317605428378165, −2.82505147340032154850850367219, −2.65455170884079945670816110578, −1.73957054101312727200784638700, −1.63805431218632083963465992264, 0,
1.63805431218632083963465992264, 1.73957054101312727200784638700, 2.65455170884079945670816110578, 2.82505147340032154850850367219, 3.56154188220255317605428378165, 4.12586421650220620613319696777, 4.63919100492136925221940798677, 4.83332190202465636941309325541, 5.77272193873314481326296907642, 6.08056229568137165407273954903, 6.56405990058932844390013504676, 6.89931657836489782864864420449, 7.55947946358028496449425566831, 7.947480595907964918208604648618