Properties

Label 4-1110e2-1.1-c1e2-0-20
Degree $4$
Conductor $1232100$
Sign $-1$
Analytic cond. $78.5597$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 3·9-s + 4·13-s + 16-s − 8·19-s + 25-s − 8·31-s − 3·36-s − 2·37-s + 8·43-s − 14·49-s + 4·52-s + 20·61-s + 64-s − 16·67-s + 20·73-s − 8·76-s − 8·79-s + 9·81-s + 12·97-s + 100-s + 36·109-s − 12·117-s − 6·121-s − 8·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 1/2·4-s − 9-s + 1.10·13-s + 1/4·16-s − 1.83·19-s + 1/5·25-s − 1.43·31-s − 1/2·36-s − 0.328·37-s + 1.21·43-s − 2·49-s + 0.554·52-s + 2.56·61-s + 1/8·64-s − 1.95·67-s + 2.34·73-s − 0.917·76-s − 0.900·79-s + 81-s + 1.21·97-s + 1/10·100-s + 3.44·109-s − 1.10·117-s − 0.545·121-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1232100\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(78.5597\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1232100,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_2$ \( 1 + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
37$C_1$ \( ( 1 + T )^{2} \)
good7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81059324472633605684417031104, −7.37331018075114938881780514356, −6.87493338522800143592874040603, −6.27790394394954895549345060581, −6.21035074530515276134610094877, −5.72116256637183355409115684013, −5.15564100419176396227847875341, −4.69247680915447547060653501609, −4.00369031444618358374700555311, −3.56437110216151834426597896111, −3.17732882969520207000389302979, −2.26361843784339976106632082372, −2.10151323526117516194563984785, −1.12328850500342707125804122399, 0, 1.12328850500342707125804122399, 2.10151323526117516194563984785, 2.26361843784339976106632082372, 3.17732882969520207000389302979, 3.56437110216151834426597896111, 4.00369031444618358374700555311, 4.69247680915447547060653501609, 5.15564100419176396227847875341, 5.72116256637183355409115684013, 6.21035074530515276134610094877, 6.27790394394954895549345060581, 6.87493338522800143592874040603, 7.37331018075114938881780514356, 7.81059324472633605684417031104

Graph of the $Z$-function along the critical line