L(s) = 1 | + 4-s − 3·9-s + 4·13-s + 16-s − 8·19-s + 25-s − 8·31-s − 3·36-s − 2·37-s + 8·43-s − 14·49-s + 4·52-s + 20·61-s + 64-s − 16·67-s + 20·73-s − 8·76-s − 8·79-s + 9·81-s + 12·97-s + 100-s + 36·109-s − 12·117-s − 6·121-s − 8·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 9-s + 1.10·13-s + 1/4·16-s − 1.83·19-s + 1/5·25-s − 1.43·31-s − 1/2·36-s − 0.328·37-s + 1.21·43-s − 2·49-s + 0.554·52-s + 2.56·61-s + 1/8·64-s − 1.95·67-s + 2.34·73-s − 0.917·76-s − 0.900·79-s + 81-s + 1.21·97-s + 1/10·100-s + 3.44·109-s − 1.10·117-s − 0.545·121-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
−1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C1 | (1−T)(1+T) |
| 3 | C2 | 1+pT2 |
| 5 | C1×C1 | (1−T)(1+T) |
| 37 | C1 | (1+T)2 |
good | 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+4T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−10T+pT2)2 |
| 67 | C2 | (1+8T+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1+4T+pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 97 | C2 | (1−6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.81059324472633605684417031104, −7.37331018075114938881780514356, −6.87493338522800143592874040603, −6.27790394394954895549345060581, −6.21035074530515276134610094877, −5.72116256637183355409115684013, −5.15564100419176396227847875341, −4.69247680915447547060653501609, −4.00369031444618358374700555311, −3.56437110216151834426597896111, −3.17732882969520207000389302979, −2.26361843784339976106632082372, −2.10151323526117516194563984785, −1.12328850500342707125804122399, 0,
1.12328850500342707125804122399, 2.10151323526117516194563984785, 2.26361843784339976106632082372, 3.17732882969520207000389302979, 3.56437110216151834426597896111, 4.00369031444618358374700555311, 4.69247680915447547060653501609, 5.15564100419176396227847875341, 5.72116256637183355409115684013, 6.21035074530515276134610094877, 6.27790394394954895549345060581, 6.87493338522800143592874040603, 7.37331018075114938881780514356, 7.81059324472633605684417031104