L(s) = 1 | − 2·3-s + 4-s − 2·7-s + 9-s − 2·12-s − 8·13-s + 16-s + 4·19-s + 4·21-s + 25-s + 4·27-s − 2·28-s + 10·31-s + 36-s + 2·37-s + 16·39-s − 2·43-s − 2·48-s − 11·49-s − 8·52-s − 8·57-s − 2·61-s − 2·63-s + 64-s − 8·67-s − 32·73-s − 2·75-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1/2·4-s − 0.755·7-s + 1/3·9-s − 0.577·12-s − 2.21·13-s + 1/4·16-s + 0.917·19-s + 0.872·21-s + 1/5·25-s + 0.769·27-s − 0.377·28-s + 1.79·31-s + 1/6·36-s + 0.328·37-s + 2.56·39-s − 0.304·43-s − 0.288·48-s − 1.57·49-s − 1.10·52-s − 1.05·57-s − 0.256·61-s − 0.251·63-s + 1/8·64-s − 0.977·67-s − 3.74·73-s − 0.230·75-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
−1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C1 | (1−T)(1+T) |
| 3 | C2 | 1+2T+pT2 |
| 5 | C1×C1 | (1−T)(1+T) |
| 37 | C1 | (1−T)2 |
good | 7 | C2 | (1+T+pT2)2 |
| 11 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 13 | C2 | (1+4T+pT2)2 |
| 17 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 19 | C2 | (1−2T+pT2)2 |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 31 | C2 | (1−5T+pT2)2 |
| 41 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 43 | C2 | (1+T+pT2)2 |
| 47 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 53 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1+T+pT2)2 |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 73 | C2 | (1+16T+pT2)2 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−17T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.48472813821623192367156751152, −7.47402466508823037518119617944, −6.73483784989315938735561487128, −6.56330850429489211825831149583, −5.99940287722666102586658741510, −5.73299805716885755231121374807, −5.06620453918957560960032027985, −4.60963444019434721197685153570, −4.59767259681282669603710565857, −3.42767809661089504801834268834, −2.99576716331676506161499712038, −2.62659393830675313979656999849, −1.82989205635176673644713429623, −0.856493313433969578668782918754, 0,
0.856493313433969578668782918754, 1.82989205635176673644713429623, 2.62659393830675313979656999849, 2.99576716331676506161499712038, 3.42767809661089504801834268834, 4.59767259681282669603710565857, 4.60963444019434721197685153570, 5.06620453918957560960032027985, 5.73299805716885755231121374807, 5.99940287722666102586658741510, 6.56330850429489211825831149583, 6.73483784989315938735561487128, 7.47402466508823037518119617944, 7.48472813821623192367156751152