L(s) = 1 | − 4-s − 2·7-s + 5·13-s − 3·16-s − 2·19-s − 25-s + 2·28-s − 8·31-s − 14·37-s − 2·43-s − 2·49-s − 5·52-s − 8·61-s + 7·64-s + 4·67-s − 11·73-s + 2·76-s + 4·79-s − 10·91-s − 14·97-s + 100-s + 10·103-s + 19·109-s + 6·112-s − 121-s + 8·124-s + 127-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 0.755·7-s + 1.38·13-s − 3/4·16-s − 0.458·19-s − 1/5·25-s + 0.377·28-s − 1.43·31-s − 2.30·37-s − 0.304·43-s − 2/7·49-s − 0.693·52-s − 1.02·61-s + 7/8·64-s + 0.488·67-s − 1.28·73-s + 0.229·76-s + 0.450·79-s − 1.04·91-s − 1.42·97-s + 1/10·100-s + 0.985·103-s + 1.81·109-s + 0.566·112-s − 0.0909·121-s + 0.718·124-s + 0.0887·127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1108809 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1108809 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9039221560\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9039221560\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.197181330501675665141673318575, −7.60977154216901774065449204587, −7.11027382857471525213903277799, −6.73086013145082045849194340396, −6.36916345589902292982084876513, −5.84621012386870821586842810565, −5.43607919307540313812268854095, −4.95529524168579606439714045444, −4.27975753383973177126436762478, −3.96653175764800044914385568213, −3.31622441231059203090650649418, −3.10762193633946813024728772163, −2.02133099752009122348389326681, −1.63158118972966901111815822115, −0.42685637746686469940578920371,
0.42685637746686469940578920371, 1.63158118972966901111815822115, 2.02133099752009122348389326681, 3.10762193633946813024728772163, 3.31622441231059203090650649418, 3.96653175764800044914385568213, 4.27975753383973177126436762478, 4.95529524168579606439714045444, 5.43607919307540313812268854095, 5.84621012386870821586842810565, 6.36916345589902292982084876513, 6.73086013145082045849194340396, 7.11027382857471525213903277799, 7.60977154216901774065449204587, 8.197181330501675665141673318575