Properties

Label 4-1053e2-1.1-c0e2-0-5
Degree $4$
Conductor $1108809$
Sign $1$
Analytic cond. $0.276166$
Root an. cond. $0.724924$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 4·7-s − 13-s + 19-s − 25-s − 4·28-s + 31-s + 37-s − 2·43-s + 10·49-s + 52-s − 2·61-s + 64-s − 2·67-s − 2·73-s − 76-s + 79-s − 4·91-s − 2·97-s + 100-s − 2·103-s − 2·109-s − 121-s − 124-s + 127-s + 131-s + 4·133-s + ⋯
L(s)  = 1  − 4-s + 4·7-s − 13-s + 19-s − 25-s − 4·28-s + 31-s + 37-s − 2·43-s + 10·49-s + 52-s − 2·61-s + 64-s − 2·67-s − 2·73-s − 76-s + 79-s − 4·91-s − 2·97-s + 100-s − 2·103-s − 2·109-s − 121-s − 124-s + 127-s + 131-s + 4·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1108809 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1108809 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1108809\)    =    \(3^{8} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.276166\)
Root analytic conductor: \(0.724924\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1108809,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.217440026\)
\(L(\frac12)\) \(\approx\) \(1.217440026\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
13$C_2$ \( 1 + T + T^{2} \)
good2$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
5$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
7$C_1$ \( ( 1 - T )^{4} \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 + T + T^{2} )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 + T + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T + T^{2} )^{2} \)
71$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
73$C_2$ \( ( 1 + T + T^{2} )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23704914992218745391626942060, −10.01095003093223815659584033864, −9.216019771550208950510469717174, −9.191498616977325427273532421756, −8.408233962665429344204001371610, −8.330477287750654184636961315417, −7.82756707894427780908949543687, −7.69017942775142309345399351084, −7.26632587461682163967696025736, −6.61958537202565282917423637121, −5.61790621671738045036693127095, −5.54855374854932060318400800243, −4.95301453467013961885352055369, −4.72247173131924966925870251894, −4.31787549763402384801120994026, −4.12096246784870526425075418661, −2.97531727252643223703800178133, −2.33825696699232122117955207074, −1.59512119726909521771722121501, −1.32258396653532471848543228392, 1.32258396653532471848543228392, 1.59512119726909521771722121501, 2.33825696699232122117955207074, 2.97531727252643223703800178133, 4.12096246784870526425075418661, 4.31787549763402384801120994026, 4.72247173131924966925870251894, 4.95301453467013961885352055369, 5.54855374854932060318400800243, 5.61790621671738045036693127095, 6.61958537202565282917423637121, 7.26632587461682163967696025736, 7.69017942775142309345399351084, 7.82756707894427780908949543687, 8.330477287750654184636961315417, 8.408233962665429344204001371610, 9.191498616977325427273532421756, 9.216019771550208950510469717174, 10.01095003093223815659584033864, 10.23704914992218745391626942060

Graph of the $Z$-function along the critical line