Properties

Label 2.1053.6t5.c.b
Dimension $2$
Group $S_3\times C_3$
Conductor $1053$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3\times C_3$
Conductor: \(1053\)\(\medspace = 3^{4} \cdot 13 \)
Artin stem field: Galois closure of 6.0.3326427.1
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Determinant: 1.117.6t1.a.b
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.4563.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 7x^{3} + 13 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 8.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{2} + 21x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 17 a + 15 + \left(19 a + 1\right)\cdot 23 + \left(12 a + 6\right)\cdot 23^{2} + \left(15 a + 1\right)\cdot 23^{3} + \left(11 a + 5\right)\cdot 23^{4} + \left(17 a + 17\right)\cdot 23^{5} + \left(6 a + 21\right)\cdot 23^{6} + 8\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 6 a + 3 + \left(3 a + 1\right)\cdot 23 + \left(10 a + 12\right)\cdot 23^{2} + \left(7 a + 19\right)\cdot 23^{3} + \left(11 a + 12\right)\cdot 23^{4} + \left(5 a + 17\right)\cdot 23^{5} + \left(16 a + 17\right)\cdot 23^{6} + \left(22 a + 2\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 16 a + 18 + \left(5 a + 4\right)\cdot 23 + \left(18 a + 11\right)\cdot 23^{2} + \left(19 a + 7\right)\cdot 23^{3} + 16 a\cdot 23^{4} + \left(21 a + 21\right)\cdot 23^{5} + \left(7 a + 20\right)\cdot 23^{6} + \left(a + 22\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 10 a + 16 + \left(2 a + 21\right)\cdot 23 + \left(8 a + 14\right)\cdot 23^{2} + \left(12 a + 20\right)\cdot 23^{3} + \left(5 a + 18\right)\cdot 23^{4} + \left(16 a + 3\right)\cdot 23^{5} + \left(14 a + 13\right)\cdot 23^{6} + \left(a + 2\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 13 a + 13 + \left(20 a + 16\right)\cdot 23 + \left(14 a + 5\right)\cdot 23^{2} + \left(10 a + 14\right)\cdot 23^{3} + \left(17 a + 17\right)\cdot 23^{4} + \left(6 a + 7\right)\cdot 23^{5} + \left(8 a + 3\right)\cdot 23^{6} + \left(21 a + 14\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 7 a + 4 + 17 a\cdot 23 + \left(4 a + 19\right)\cdot 23^{2} + \left(3 a + 5\right)\cdot 23^{3} + \left(6 a + 14\right)\cdot 23^{4} + \left(a + 1\right)\cdot 23^{5} + \left(15 a + 15\right)\cdot 23^{6} + \left(21 a + 17\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(1,4)(2,3)(5,6)$
$(2,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$3$$2$$(1,4)(2,3)(5,6)$$0$
$1$$3$$(1,3,5)(2,6,4)$$-2 \zeta_{3} - 2$
$1$$3$$(1,5,3)(2,4,6)$$2 \zeta_{3}$
$2$$3$$(1,3,5)$$-\zeta_{3}$
$2$$3$$(1,5,3)$$\zeta_{3} + 1$
$2$$3$$(1,5,3)(2,6,4)$$-1$
$3$$6$$(1,2,3,6,5,4)$$0$
$3$$6$$(1,4,5,6,3,2)$$0$