L(s) = 1 | + 2·3-s + 3·9-s + 4·27-s − 2·37-s − 2·49-s + 5·81-s − 4·111-s + 2·121-s + 127-s + 131-s + 137-s + 139-s − 4·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | + 2·3-s + 3·9-s + 4·27-s − 2·37-s − 2·49-s + 5·81-s − 4·111-s + 2·121-s + 127-s + 131-s + 137-s + 139-s − 4·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3154176 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3154176 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.606777401\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.606777401\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.426173882223015863852285668220, −9.325054677920461449105578845317, −8.844391903596422675846563968073, −8.523209355728626700386277236911, −8.060460267554353381103231348907, −7.965544001346385165724090064048, −7.35181616075604460950650101971, −7.07253664058948919393827658611, −6.61100799957585136596190739615, −6.35329881595573979449596344814, −5.48856217915871096384010677831, −5.16481271529654733240152396222, −4.45666397988292942789989544860, −4.35580750414592608714486247682, −3.49056794757306326801487732408, −3.43080518028761430301594679409, −2.90887132766063790590384141885, −2.24946433102945990229629677595, −1.82859637069686783306816551439, −1.25810513308472643295802697626,
1.25810513308472643295802697626, 1.82859637069686783306816551439, 2.24946433102945990229629677595, 2.90887132766063790590384141885, 3.43080518028761430301594679409, 3.49056794757306326801487732408, 4.35580750414592608714486247682, 4.45666397988292942789989544860, 5.16481271529654733240152396222, 5.48856217915871096384010677831, 6.35329881595573979449596344814, 6.61100799957585136596190739615, 7.07253664058948919393827658611, 7.35181616075604460950650101971, 7.965544001346385165724090064048, 8.060460267554353381103231348907, 8.523209355728626700386277236911, 8.844391903596422675846563968073, 9.325054677920461449105578845317, 9.426173882223015863852285668220