L(s) = 1 | + (−0.5 + 0.866i)2-s + (−1.19 − 1.25i)3-s + (−0.499 − 0.866i)4-s + (0.866 − 0.5i)5-s + (1.68 − 0.407i)6-s + (−1.93 − 1.11i)7-s + 0.999·8-s + (−0.147 + 2.99i)9-s + 0.999i·10-s + (2.43 + 2.24i)11-s + (−0.489 + 1.66i)12-s + (−2.70 + 1.55i)13-s + (1.93 − 1.11i)14-s + (−1.66 − 0.489i)15-s + (−0.5 + 0.866i)16-s − 3.53·17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.689 − 0.724i)3-s + (−0.249 − 0.433i)4-s + (0.387 − 0.223i)5-s + (0.687 − 0.166i)6-s + (−0.732 − 0.422i)7-s + 0.353·8-s + (−0.0490 + 0.998i)9-s + 0.316i·10-s + (0.735 + 0.677i)11-s + (−0.141 + 0.479i)12-s + (−0.749 + 0.432i)13-s + (0.517 − 0.299i)14-s + (−0.429 − 0.126i)15-s + (−0.125 + 0.216i)16-s − 0.856·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.429 - 0.902i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.429 - 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.655911 + 0.414233i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.655911 + 0.414233i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (1.19 + 1.25i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-2.43 - 2.24i)T \) |
good | 7 | \( 1 + (1.93 + 1.11i)T + (3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (2.70 - 1.55i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 3.53T + 17T^{2} \) |
| 19 | \( 1 - 0.649iT - 19T^{2} \) |
| 23 | \( 1 + (-1.72 + 0.997i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.0531 + 0.0920i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.17 - 7.23i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 3.00T + 37T^{2} \) |
| 41 | \( 1 + (-1.38 - 2.39i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-10.0 - 5.78i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.60 - 3.23i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 3.95iT - 53T^{2} \) |
| 59 | \( 1 + (2.80 - 1.61i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-11.4 - 6.58i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.91 - 8.51i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.16iT - 71T^{2} \) |
| 73 | \( 1 + 1.40iT - 73T^{2} \) |
| 79 | \( 1 + (-2.59 - 1.49i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.91 - 8.51i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 0.269iT - 89T^{2} \) |
| 97 | \( 1 + (2.53 - 4.38i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01648244430734807750544433409, −9.317378780624960927516561939440, −8.427141230011525525995062849444, −7.25284665849183288724455844433, −6.82606467314773454405994191948, −6.17105894147275231499882575859, −5.08055176024090880420917463266, −4.25425676278669303518225162938, −2.39987153946358631411170631773, −1.09385554121221001997793612461,
0.52367366845935579879480022432, 2.41890171346770918082660770119, 3.43479129743371790543194288403, 4.40681678243454476094410417132, 5.55449604871629840114005369698, 6.28483149113532513531790664856, 7.19822351260553360614920174724, 8.601415320216219853920245664138, 9.324939485621334545640720934789, 9.782582690565645464199460305837