L(s) = 1 | + (−0.431 + 1.34i)2-s + 2.73·3-s + (−1.62 − 1.16i)4-s − i·5-s + (−1.18 + 3.68i)6-s + (2.26 − 1.69i)8-s + 4.49·9-s + (1.34 + 0.431i)10-s + 0.100i·11-s + (−4.45 − 3.18i)12-s − 4.11i·13-s − 2.73i·15-s + (1.29 + 3.78i)16-s − 5.39i·17-s + (−1.93 + 6.05i)18-s + 7.45·19-s + ⋯ |
L(s) = 1 | + (−0.305 + 0.952i)2-s + 1.58·3-s + (−0.813 − 0.581i)4-s − 0.447i·5-s + (−0.482 + 1.50i)6-s + (0.801 − 0.597i)8-s + 1.49·9-s + (0.425 + 0.136i)10-s + 0.0302i·11-s + (−1.28 − 0.918i)12-s − 1.14i·13-s − 0.706i·15-s + (0.324 + 0.945i)16-s − 1.30i·17-s + (−0.456 + 1.42i)18-s + 1.71·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.972−0.234i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.972−0.234i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.972−0.234i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.972−0.234i)
|
Particular Values
L(1) |
≈ |
2.18522+0.260270i |
L(21) |
≈ |
2.18522+0.260270i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.431−1.34i)T |
| 5 | 1+iT |
| 7 | 1 |
good | 3 | 1−2.73T+3T2 |
| 11 | 1−0.100iT−11T2 |
| 13 | 1+4.11iT−13T2 |
| 17 | 1+5.39iT−17T2 |
| 19 | 1−7.45T+19T2 |
| 23 | 1+1.50iT−23T2 |
| 29 | 1+2.37T+29T2 |
| 31 | 1+5.44T+31T2 |
| 37 | 1−1.03T+37T2 |
| 41 | 1−7.99iT−41T2 |
| 43 | 1−7.04iT−43T2 |
| 47 | 1−4.44T+47T2 |
| 53 | 1−6.14T+53T2 |
| 59 | 1−8.52T+59T2 |
| 61 | 1−7.90iT−61T2 |
| 67 | 1+0.109iT−67T2 |
| 71 | 1+6.73iT−71T2 |
| 73 | 1−6.14iT−73T2 |
| 79 | 1+4.27iT−79T2 |
| 83 | 1−6.50T+83T2 |
| 89 | 1+3.19iT−89T2 |
| 97 | 1−11.0iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.483093773043967448584297559871, −9.220188205367784361668475526303, −8.231995326416360431527795167652, −7.68392540116267843211724394670, −7.09568584331847285589311868809, −5.66877906720526979557786213291, −4.89632328300167431726127820670, −3.70247337991162002946968602361, −2.71988592632244488697546733672, −1.06392150944329982998444190262,
1.63215786295818948934965192801, 2.43487672800167087273396131219, 3.60522106835359230482331808353, 3.92042269509667148517289196158, 5.43798910352735752323356525266, 7.06878483829745946742259977001, 7.67346021476486395317565260089, 8.589380426640651138674015531127, 9.179868663020377513593104798631, 9.791479665363594977715563272830