L(s) = 1 | + (−0.431 − 1.34i)2-s + 2.73·3-s + (−1.62 + 1.16i)4-s + i·5-s + (−1.18 − 3.68i)6-s + (2.26 + 1.69i)8-s + 4.49·9-s + (1.34 − 0.431i)10-s − 0.100i·11-s + (−4.45 + 3.18i)12-s + 4.11i·13-s + 2.73i·15-s + (1.29 − 3.78i)16-s + 5.39i·17-s + (−1.93 − 6.05i)18-s + 7.45·19-s + ⋯ |
L(s) = 1 | + (−0.305 − 0.952i)2-s + 1.58·3-s + (−0.813 + 0.581i)4-s + 0.447i·5-s + (−0.482 − 1.50i)6-s + (0.801 + 0.597i)8-s + 1.49·9-s + (0.425 − 0.136i)10-s − 0.0302i·11-s + (−1.28 + 0.918i)12-s + 1.14i·13-s + 0.706i·15-s + (0.324 − 0.945i)16-s + 1.30i·17-s + (−0.456 − 1.42i)18-s + 1.71·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.972 + 0.234i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.972 + 0.234i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.18522 - 0.260270i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.18522 - 0.260270i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.431 + 1.34i)T \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 2.73T + 3T^{2} \) |
| 11 | \( 1 + 0.100iT - 11T^{2} \) |
| 13 | \( 1 - 4.11iT - 13T^{2} \) |
| 17 | \( 1 - 5.39iT - 17T^{2} \) |
| 19 | \( 1 - 7.45T + 19T^{2} \) |
| 23 | \( 1 - 1.50iT - 23T^{2} \) |
| 29 | \( 1 + 2.37T + 29T^{2} \) |
| 31 | \( 1 + 5.44T + 31T^{2} \) |
| 37 | \( 1 - 1.03T + 37T^{2} \) |
| 41 | \( 1 + 7.99iT - 41T^{2} \) |
| 43 | \( 1 + 7.04iT - 43T^{2} \) |
| 47 | \( 1 - 4.44T + 47T^{2} \) |
| 53 | \( 1 - 6.14T + 53T^{2} \) |
| 59 | \( 1 - 8.52T + 59T^{2} \) |
| 61 | \( 1 + 7.90iT - 61T^{2} \) |
| 67 | \( 1 - 0.109iT - 67T^{2} \) |
| 71 | \( 1 - 6.73iT - 71T^{2} \) |
| 73 | \( 1 + 6.14iT - 73T^{2} \) |
| 79 | \( 1 - 4.27iT - 79T^{2} \) |
| 83 | \( 1 - 6.50T + 83T^{2} \) |
| 89 | \( 1 - 3.19iT - 89T^{2} \) |
| 97 | \( 1 + 11.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.791479665363594977715563272830, −9.179868663020377513593104798631, −8.589380426640651138674015531127, −7.67346021476486395317565260089, −7.06878483829745946742259977001, −5.43798910352735752323356525266, −3.92042269509667148517289196158, −3.60522106835359230482331808353, −2.43487672800167087273396131219, −1.63215786295818948934965192801,
1.06392150944329982998444190262, 2.71988592632244488697546733672, 3.70247337991162002946968602361, 4.89632328300167431726127820670, 5.66877906720526979557786213291, 7.09568584331847285589311868809, 7.68392540116267843211724394670, 8.231995326416360431527795167652, 9.220188205367784361668475526303, 9.483093773043967448584297559871