L(s) = 1 | + (−0.976 − 1.02i)2-s + 1.11·3-s + (−0.0916 + 1.99i)4-s − i·5-s + (−1.08 − 1.13i)6-s + (2.13 − 1.85i)8-s − 1.76·9-s + (−1.02 + 0.976i)10-s − 1.71i·11-s + (−0.101 + 2.22i)12-s + 2.45i·13-s − 1.11i·15-s + (−3.98 − 0.366i)16-s − 6.21i·17-s + (1.72 + 1.80i)18-s − 0.216·19-s + ⋯ |
L(s) = 1 | + (−0.690 − 0.723i)2-s + 0.642·3-s + (−0.0458 + 0.998i)4-s − 0.447i·5-s + (−0.443 − 0.464i)6-s + (0.753 − 0.656i)8-s − 0.587·9-s + (−0.323 + 0.308i)10-s − 0.516i·11-s + (−0.0294 + 0.641i)12-s + 0.682i·13-s − 0.287i·15-s + (−0.995 − 0.0915i)16-s − 1.50i·17-s + (0.405 + 0.424i)18-s − 0.0496·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.785+0.619i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.785+0.619i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.785+0.619i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.785+0.619i)
|
Particular Values
L(1) |
≈ |
0.312036−0.899378i |
L(21) |
≈ |
0.312036−0.899378i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.976+1.02i)T |
| 5 | 1+iT |
| 7 | 1 |
good | 3 | 1−1.11T+3T2 |
| 11 | 1+1.71iT−11T2 |
| 13 | 1−2.45iT−13T2 |
| 17 | 1+6.21iT−17T2 |
| 19 | 1+0.216T+19T2 |
| 23 | 1+6.56iT−23T2 |
| 29 | 1+2.47T+29T2 |
| 31 | 1−0.163T+31T2 |
| 37 | 1−7.69T+37T2 |
| 41 | 1+8.34iT−41T2 |
| 43 | 1+1.89iT−43T2 |
| 47 | 1+11.7T+47T2 |
| 53 | 1−13.0T+53T2 |
| 59 | 1+4.28T+59T2 |
| 61 | 1+7.00iT−61T2 |
| 67 | 1+5.17iT−67T2 |
| 71 | 1+5.04iT−71T2 |
| 73 | 1−7.61iT−73T2 |
| 79 | 1+15.9iT−79T2 |
| 83 | 1+5.47T+83T2 |
| 89 | 1−1.78iT−89T2 |
| 97 | 1−10.5iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.398039342058804405926619636439, −9.001581757431571428928377983132, −8.284287962621193688575486744148, −7.49898464659585544098036878209, −6.46174703444166480601214177759, −5.09335215355765725525007185984, −4.03402205667223555923718277166, −2.97858776054495405351088606430, −2.13514602466028987641033619140, −0.50047095410346686000349122968,
1.62773461456053424638660875729, 2.87733769059205109424810061889, 4.10201619632146522511133608055, 5.48320488474189018982555115934, 6.11694846331530908804166289852, 7.16931345808113103883676096728, 7.987831287455493907600767967893, 8.425115569912232471175546283218, 9.494810216604026630086914747495, 10.00121686978251175011328366416