L(s) = 1 | + (−0.976 + 1.02i)2-s + 1.11·3-s + (−0.0916 − 1.99i)4-s + i·5-s + (−1.08 + 1.13i)6-s + (2.13 + 1.85i)8-s − 1.76·9-s + (−1.02 − 0.976i)10-s + 1.71i·11-s + (−0.101 − 2.22i)12-s − 2.45i·13-s + 1.11i·15-s + (−3.98 + 0.366i)16-s + 6.21i·17-s + (1.72 − 1.80i)18-s − 0.216·19-s + ⋯ |
L(s) = 1 | + (−0.690 + 0.723i)2-s + 0.642·3-s + (−0.0458 − 0.998i)4-s + 0.447i·5-s + (−0.443 + 0.464i)6-s + (0.753 + 0.656i)8-s − 0.587·9-s + (−0.323 − 0.308i)10-s + 0.516i·11-s + (−0.0294 − 0.641i)12-s − 0.682i·13-s + 0.287i·15-s + (−0.995 + 0.0915i)16-s + 1.50i·17-s + (0.405 − 0.424i)18-s − 0.0496·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.785 - 0.619i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.785 - 0.619i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.312036 + 0.899378i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.312036 + 0.899378i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.976 - 1.02i)T \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 1.11T + 3T^{2} \) |
| 11 | \( 1 - 1.71iT - 11T^{2} \) |
| 13 | \( 1 + 2.45iT - 13T^{2} \) |
| 17 | \( 1 - 6.21iT - 17T^{2} \) |
| 19 | \( 1 + 0.216T + 19T^{2} \) |
| 23 | \( 1 - 6.56iT - 23T^{2} \) |
| 29 | \( 1 + 2.47T + 29T^{2} \) |
| 31 | \( 1 - 0.163T + 31T^{2} \) |
| 37 | \( 1 - 7.69T + 37T^{2} \) |
| 41 | \( 1 - 8.34iT - 41T^{2} \) |
| 43 | \( 1 - 1.89iT - 43T^{2} \) |
| 47 | \( 1 + 11.7T + 47T^{2} \) |
| 53 | \( 1 - 13.0T + 53T^{2} \) |
| 59 | \( 1 + 4.28T + 59T^{2} \) |
| 61 | \( 1 - 7.00iT - 61T^{2} \) |
| 67 | \( 1 - 5.17iT - 67T^{2} \) |
| 71 | \( 1 - 5.04iT - 71T^{2} \) |
| 73 | \( 1 + 7.61iT - 73T^{2} \) |
| 79 | \( 1 - 15.9iT - 79T^{2} \) |
| 83 | \( 1 + 5.47T + 83T^{2} \) |
| 89 | \( 1 + 1.78iT - 89T^{2} \) |
| 97 | \( 1 + 10.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00121686978251175011328366416, −9.494810216604026630086914747495, −8.425115569912232471175546283218, −7.987831287455493907600767967893, −7.16931345808113103883676096728, −6.11694846331530908804166289852, −5.48320488474189018982555115934, −4.10201619632146522511133608055, −2.87733769059205109424810061889, −1.62773461456053424638660875729,
0.50047095410346686000349122968, 2.13514602466028987641033619140, 2.97858776054495405351088606430, 4.03402205667223555923718277166, 5.09335215355765725525007185984, 6.46174703444166480601214177759, 7.49898464659585544098036878209, 8.284287962621193688575486744148, 9.001581757431571428928377983132, 9.398039342058804405926619636439