Properties

Label 2-980-140.139-c1-0-40
Degree 22
Conductor 980980
Sign 0.840+0.541i0.840 + 0.541i
Analytic cond. 7.825337.82533
Root an. cond. 2.797382.79738
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.255 − 1.39i)2-s + 3.18i·3-s + (−1.86 − 0.711i)4-s + (−1.80 − 1.31i)5-s + (4.43 + 0.815i)6-s + (−1.46 + 2.41i)8-s − 7.15·9-s + (−2.29 + 2.17i)10-s − 4.51i·11-s + (2.26 − 5.95i)12-s + 2.22·13-s + (4.19 − 5.75i)15-s + (2.98 + 2.66i)16-s + 2.52·17-s + (−1.83 + 9.94i)18-s + 5.21·19-s + ⋯
L(s)  = 1  + (0.180 − 0.983i)2-s + 1.83i·3-s + (−0.934 − 0.355i)4-s + (−0.808 − 0.588i)5-s + (1.80 + 0.332i)6-s + (−0.519 + 0.854i)8-s − 2.38·9-s + (−0.725 + 0.688i)10-s − 1.36i·11-s + (0.654 − 1.71i)12-s + 0.617·13-s + (1.08 − 1.48i)15-s + (0.746 + 0.665i)16-s + 0.613·17-s + (−0.431 + 2.34i)18-s + 1.19·19-s + ⋯

Functional equation

Λ(s)=(980s/2ΓC(s)L(s)=((0.840+0.541i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.840 + 0.541i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(980s/2ΓC(s+1/2)L(s)=((0.840+0.541i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.840 + 0.541i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 980980    =    225722^{2} \cdot 5 \cdot 7^{2}
Sign: 0.840+0.541i0.840 + 0.541i
Analytic conductor: 7.825337.82533
Root analytic conductor: 2.797382.79738
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ980(979,)\chi_{980} (979, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 980, ( :1/2), 0.840+0.541i)(2,\ 980,\ (\ :1/2),\ 0.840 + 0.541i)

Particular Values

L(1)L(1) \approx 1.192230.350714i1.19223 - 0.350714i
L(12)L(\frac12) \approx 1.192230.350714i1.19223 - 0.350714i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.255+1.39i)T 1 + (-0.255 + 1.39i)T
5 1+(1.80+1.31i)T 1 + (1.80 + 1.31i)T
7 1 1
good3 13.18iT3T2 1 - 3.18iT - 3T^{2}
11 1+4.51iT11T2 1 + 4.51iT - 11T^{2}
13 12.22T+13T2 1 - 2.22T + 13T^{2}
17 12.52T+17T2 1 - 2.52T + 17T^{2}
19 15.21T+19T2 1 - 5.21T + 19T^{2}
23 11.71T+23T2 1 - 1.71T + 23T^{2}
29 1+2.31T+29T2 1 + 2.31T + 29T^{2}
31 14.62T+31T2 1 - 4.62T + 31T^{2}
37 1+0.336iT37T2 1 + 0.336iT - 37T^{2}
41 13.28iT41T2 1 - 3.28iT - 41T^{2}
43 16.66T+43T2 1 - 6.66T + 43T^{2}
47 11.44iT47T2 1 - 1.44iT - 47T^{2}
53 1+10.0iT53T2 1 + 10.0iT - 53T^{2}
59 13.20T+59T2 1 - 3.20T + 59T^{2}
61 16.05iT61T2 1 - 6.05iT - 61T^{2}
67 111.1T+67T2 1 - 11.1T + 67T^{2}
71 1+9.15iT71T2 1 + 9.15iT - 71T^{2}
73 1+3.24T+73T2 1 + 3.24T + 73T^{2}
79 1+14.2iT79T2 1 + 14.2iT - 79T^{2}
83 111.3iT83T2 1 - 11.3iT - 83T^{2}
89 1+15.2iT89T2 1 + 15.2iT - 89T^{2}
97 14.49T+97T2 1 - 4.49T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.00457686032921278366635907721, −9.239809335697116153600060978848, −8.661322478104607771712980402867, −7.966940433724020319733207267363, −5.86936814426831182586035266438, −5.24156324256187001776873734003, −4.40182676782255206254831641604, −3.51824904662436765619705519166, −3.12829549831056881529650396869, −0.75494200935979371714091887379, 1.00525572284414680200861721997, 2.65068665978979326012187996768, 3.79371182483405881492737590372, 5.15749914677890920406114887558, 6.14466204535852271295749963415, 6.92703274444332908813517306045, 7.44923547486399711533507110613, 7.898836664625430013278528622627, 8.794773842972641359915223875652, 9.878265446346659954328473483995

Graph of the ZZ-function along the critical line