Properties

Label 2-980-140.139-c1-0-40
Degree $2$
Conductor $980$
Sign $0.840 + 0.541i$
Analytic cond. $7.82533$
Root an. cond. $2.79738$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.255 − 1.39i)2-s + 3.18i·3-s + (−1.86 − 0.711i)4-s + (−1.80 − 1.31i)5-s + (4.43 + 0.815i)6-s + (−1.46 + 2.41i)8-s − 7.15·9-s + (−2.29 + 2.17i)10-s − 4.51i·11-s + (2.26 − 5.95i)12-s + 2.22·13-s + (4.19 − 5.75i)15-s + (2.98 + 2.66i)16-s + 2.52·17-s + (−1.83 + 9.94i)18-s + 5.21·19-s + ⋯
L(s)  = 1  + (0.180 − 0.983i)2-s + 1.83i·3-s + (−0.934 − 0.355i)4-s + (−0.808 − 0.588i)5-s + (1.80 + 0.332i)6-s + (−0.519 + 0.854i)8-s − 2.38·9-s + (−0.725 + 0.688i)10-s − 1.36i·11-s + (0.654 − 1.71i)12-s + 0.617·13-s + (1.08 − 1.48i)15-s + (0.746 + 0.665i)16-s + 0.613·17-s + (−0.431 + 2.34i)18-s + 1.19·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.840 + 0.541i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.840 + 0.541i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(980\)    =    \(2^{2} \cdot 5 \cdot 7^{2}\)
Sign: $0.840 + 0.541i$
Analytic conductor: \(7.82533\)
Root analytic conductor: \(2.79738\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{980} (979, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 980,\ (\ :1/2),\ 0.840 + 0.541i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.19223 - 0.350714i\)
\(L(\frac12)\) \(\approx\) \(1.19223 - 0.350714i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.255 + 1.39i)T \)
5 \( 1 + (1.80 + 1.31i)T \)
7 \( 1 \)
good3 \( 1 - 3.18iT - 3T^{2} \)
11 \( 1 + 4.51iT - 11T^{2} \)
13 \( 1 - 2.22T + 13T^{2} \)
17 \( 1 - 2.52T + 17T^{2} \)
19 \( 1 - 5.21T + 19T^{2} \)
23 \( 1 - 1.71T + 23T^{2} \)
29 \( 1 + 2.31T + 29T^{2} \)
31 \( 1 - 4.62T + 31T^{2} \)
37 \( 1 + 0.336iT - 37T^{2} \)
41 \( 1 - 3.28iT - 41T^{2} \)
43 \( 1 - 6.66T + 43T^{2} \)
47 \( 1 - 1.44iT - 47T^{2} \)
53 \( 1 + 10.0iT - 53T^{2} \)
59 \( 1 - 3.20T + 59T^{2} \)
61 \( 1 - 6.05iT - 61T^{2} \)
67 \( 1 - 11.1T + 67T^{2} \)
71 \( 1 + 9.15iT - 71T^{2} \)
73 \( 1 + 3.24T + 73T^{2} \)
79 \( 1 + 14.2iT - 79T^{2} \)
83 \( 1 - 11.3iT - 83T^{2} \)
89 \( 1 + 15.2iT - 89T^{2} \)
97 \( 1 - 4.49T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00457686032921278366635907721, −9.239809335697116153600060978848, −8.661322478104607771712980402867, −7.966940433724020319733207267363, −5.86936814426831182586035266438, −5.24156324256187001776873734003, −4.40182676782255206254831641604, −3.51824904662436765619705519166, −3.12829549831056881529650396869, −0.75494200935979371714091887379, 1.00525572284414680200861721997, 2.65068665978979326012187996768, 3.79371182483405881492737590372, 5.15749914677890920406114887558, 6.14466204535852271295749963415, 6.92703274444332908813517306045, 7.44923547486399711533507110613, 7.898836664625430013278528622627, 8.794773842972641359915223875652, 9.878265446346659954328473483995

Graph of the $Z$-function along the critical line