L(s) = 1 | + (0.255 + 1.39i)2-s − 3.18i·3-s + (−1.86 + 0.711i)4-s + (−1.80 + 1.31i)5-s + (4.43 − 0.815i)6-s + (−1.46 − 2.41i)8-s − 7.15·9-s + (−2.29 − 2.17i)10-s + 4.51i·11-s + (2.26 + 5.95i)12-s + 2.22·13-s + (4.19 + 5.75i)15-s + (2.98 − 2.66i)16-s + 2.52·17-s + (−1.83 − 9.94i)18-s + 5.21·19-s + ⋯ |
L(s) = 1 | + (0.180 + 0.983i)2-s − 1.83i·3-s + (−0.934 + 0.355i)4-s + (−0.808 + 0.588i)5-s + (1.80 − 0.332i)6-s + (−0.519 − 0.854i)8-s − 2.38·9-s + (−0.725 − 0.688i)10-s + 1.36i·11-s + (0.654 + 1.71i)12-s + 0.617·13-s + (1.08 + 1.48i)15-s + (0.746 − 0.665i)16-s + 0.613·17-s + (−0.431 − 2.34i)18-s + 1.19·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.840 - 0.541i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.840 - 0.541i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.19223 + 0.350714i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19223 + 0.350714i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.255 - 1.39i)T \) |
| 5 | \( 1 + (1.80 - 1.31i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 3.18iT - 3T^{2} \) |
| 11 | \( 1 - 4.51iT - 11T^{2} \) |
| 13 | \( 1 - 2.22T + 13T^{2} \) |
| 17 | \( 1 - 2.52T + 17T^{2} \) |
| 19 | \( 1 - 5.21T + 19T^{2} \) |
| 23 | \( 1 - 1.71T + 23T^{2} \) |
| 29 | \( 1 + 2.31T + 29T^{2} \) |
| 31 | \( 1 - 4.62T + 31T^{2} \) |
| 37 | \( 1 - 0.336iT - 37T^{2} \) |
| 41 | \( 1 + 3.28iT - 41T^{2} \) |
| 43 | \( 1 - 6.66T + 43T^{2} \) |
| 47 | \( 1 + 1.44iT - 47T^{2} \) |
| 53 | \( 1 - 10.0iT - 53T^{2} \) |
| 59 | \( 1 - 3.20T + 59T^{2} \) |
| 61 | \( 1 + 6.05iT - 61T^{2} \) |
| 67 | \( 1 - 11.1T + 67T^{2} \) |
| 71 | \( 1 - 9.15iT - 71T^{2} \) |
| 73 | \( 1 + 3.24T + 73T^{2} \) |
| 79 | \( 1 - 14.2iT - 79T^{2} \) |
| 83 | \( 1 + 11.3iT - 83T^{2} \) |
| 89 | \( 1 - 15.2iT - 89T^{2} \) |
| 97 | \( 1 - 4.49T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.878265446346659954328473483995, −8.794773842972641359915223875652, −7.898836664625430013278528622627, −7.44923547486399711533507110613, −6.92703274444332908813517306045, −6.14466204535852271295749963415, −5.15749914677890920406114887558, −3.79371182483405881492737590372, −2.65068665978979326012187996768, −1.00525572284414680200861721997,
0.75494200935979371714091887379, 3.12829549831056881529650396869, 3.51824904662436765619705519166, 4.40182676782255206254831641604, 5.24156324256187001776873734003, 5.86936814426831182586035266438, 7.966940433724020319733207267363, 8.661322478104607771712980402867, 9.239809335697116153600060978848, 10.00457686032921278366635907721