L(s) = 1 | + (1.23 + 0.691i)2-s + 2.08i·3-s + (1.04 + 1.70i)4-s + (−1.52 + 1.63i)5-s + (−1.43 + 2.56i)6-s + (0.107 + 2.82i)8-s − 1.32·9-s + (−3.01 + 0.967i)10-s − 0.775i·11-s + (−3.54 + 2.17i)12-s − 4.18·13-s + (−3.40 − 3.16i)15-s + (−1.82 + 3.56i)16-s + 4.18·17-s + (−1.63 − 0.917i)18-s − 4.88·19-s + ⋯ |
L(s) = 1 | + (0.872 + 0.488i)2-s + 1.20i·3-s + (0.521 + 0.853i)4-s + (−0.680 + 0.732i)5-s + (−0.587 + 1.04i)6-s + (0.0381 + 0.999i)8-s − 0.442·9-s + (−0.952 + 0.305i)10-s − 0.233i·11-s + (−1.02 + 0.626i)12-s − 1.16·13-s + (−0.879 − 0.817i)15-s + (−0.455 + 0.890i)16-s + 1.01·17-s + (−0.385 − 0.216i)18-s − 1.12·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.975+0.219i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.975+0.219i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.975+0.219i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.975+0.219i)
|
Particular Values
L(1) |
≈ |
0.224642−2.02030i |
L(21) |
≈ |
0.224642−2.02030i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.23−0.691i)T |
| 5 | 1+(1.52−1.63i)T |
| 7 | 1 |
good | 3 | 1−2.08iT−3T2 |
| 11 | 1+0.775iT−11T2 |
| 13 | 1+4.18T+13T2 |
| 17 | 1−4.18T+17T2 |
| 19 | 1+4.88T+19T2 |
| 23 | 1+1.89T+23T2 |
| 29 | 1−9.98T+29T2 |
| 31 | 1−10.3T+31T2 |
| 37 | 1−3.41iT−37T2 |
| 41 | 1+3.02iT−41T2 |
| 43 | 1+9.19T+43T2 |
| 47 | 1−8.27iT−47T2 |
| 53 | 1+2.59iT−53T2 |
| 59 | 1+4.60T+59T2 |
| 61 | 1+3.26iT−61T2 |
| 67 | 1−2.27T+67T2 |
| 71 | 1−4.41iT−71T2 |
| 73 | 1+2.74T+73T2 |
| 79 | 1−14.2iT−79T2 |
| 83 | 1−2.36iT−83T2 |
| 89 | 1+14.3iT−89T2 |
| 97 | 1−14.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.30038843557478439155211430382, −9.995672828414270049367875090733, −8.530570224108336820922302801979, −7.916593798082230482525210977467, −6.90280347706216075378319128728, −6.15688825309408697973584362342, −4.86498674334837774986022429252, −4.44410968702183548245721173367, −3.41909192880302883732358977356, −2.66395270350521842216124773107,
0.69812420302899534066541484140, 1.87826293477550644549074371654, 2.97903116344241567480798116128, 4.34218663474838015895913612827, 4.95457227229005269052128808644, 6.16712295632553464960618544456, 6.91224727953287733018125634503, 7.75774435036875438966295513437, 8.477248390693047262927958196585, 9.825947903972653283646737655898