L(s) = 1 | + (1.23 − 0.691i)2-s − 2.08i·3-s + (1.04 − 1.70i)4-s + (−1.52 − 1.63i)5-s + (−1.43 − 2.56i)6-s + (0.107 − 2.82i)8-s − 1.32·9-s + (−3.01 − 0.967i)10-s + 0.775i·11-s + (−3.54 − 2.17i)12-s − 4.18·13-s + (−3.40 + 3.16i)15-s + (−1.82 − 3.56i)16-s + 4.18·17-s + (−1.63 + 0.917i)18-s − 4.88·19-s + ⋯ |
L(s) = 1 | + (0.872 − 0.488i)2-s − 1.20i·3-s + (0.521 − 0.853i)4-s + (−0.680 − 0.732i)5-s + (−0.587 − 1.04i)6-s + (0.0381 − 0.999i)8-s − 0.442·9-s + (−0.952 − 0.305i)10-s + 0.233i·11-s + (−1.02 − 0.626i)12-s − 1.16·13-s + (−0.879 + 0.817i)15-s + (−0.455 − 0.890i)16-s + 1.01·17-s + (−0.385 + 0.216i)18-s − 1.12·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.975 - 0.219i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.975 - 0.219i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.224642 + 2.02030i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.224642 + 2.02030i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.23 + 0.691i)T \) |
| 5 | \( 1 + (1.52 + 1.63i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 2.08iT - 3T^{2} \) |
| 11 | \( 1 - 0.775iT - 11T^{2} \) |
| 13 | \( 1 + 4.18T + 13T^{2} \) |
| 17 | \( 1 - 4.18T + 17T^{2} \) |
| 19 | \( 1 + 4.88T + 19T^{2} \) |
| 23 | \( 1 + 1.89T + 23T^{2} \) |
| 29 | \( 1 - 9.98T + 29T^{2} \) |
| 31 | \( 1 - 10.3T + 31T^{2} \) |
| 37 | \( 1 + 3.41iT - 37T^{2} \) |
| 41 | \( 1 - 3.02iT - 41T^{2} \) |
| 43 | \( 1 + 9.19T + 43T^{2} \) |
| 47 | \( 1 + 8.27iT - 47T^{2} \) |
| 53 | \( 1 - 2.59iT - 53T^{2} \) |
| 59 | \( 1 + 4.60T + 59T^{2} \) |
| 61 | \( 1 - 3.26iT - 61T^{2} \) |
| 67 | \( 1 - 2.27T + 67T^{2} \) |
| 71 | \( 1 + 4.41iT - 71T^{2} \) |
| 73 | \( 1 + 2.74T + 73T^{2} \) |
| 79 | \( 1 + 14.2iT - 79T^{2} \) |
| 83 | \( 1 + 2.36iT - 83T^{2} \) |
| 89 | \( 1 - 14.3iT - 89T^{2} \) |
| 97 | \( 1 - 14.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.825947903972653283646737655898, −8.477248390693047262927958196585, −7.75774435036875438966295513437, −6.91224727953287733018125634503, −6.16712295632553464960618544456, −4.95457227229005269052128808644, −4.34218663474838015895913612827, −2.97903116344241567480798116128, −1.87826293477550644549074371654, −0.69812420302899534066541484140,
2.66395270350521842216124773107, 3.41909192880302883732358977356, 4.44410968702183548245721173367, 4.86498674334837774986022429252, 6.15688825309408697973584362342, 6.90280347706216075378319128728, 7.916593798082230482525210977467, 8.530570224108336820922302801979, 9.995672828414270049367875090733, 10.30038843557478439155211430382