Properties

Label 2-97e2-1.1-c1-0-108
Degree $2$
Conductor $9409$
Sign $1$
Analytic cond. $75.1312$
Root an. cond. $8.66782$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.36·2-s + 0.429·3-s + 3.58·4-s − 1.05·5-s − 1.01·6-s + 1.83·7-s − 3.75·8-s − 2.81·9-s + 2.49·10-s − 2.02·11-s + 1.53·12-s − 1.26·13-s − 4.33·14-s − 0.453·15-s + 1.69·16-s + 5.49·17-s + 6.65·18-s − 2.74·19-s − 3.79·20-s + 0.786·21-s + 4.78·22-s − 7.47·23-s − 1.61·24-s − 3.88·25-s + 2.99·26-s − 2.49·27-s + 6.57·28-s + ⋯
L(s)  = 1  − 1.67·2-s + 0.247·3-s + 1.79·4-s − 0.472·5-s − 0.414·6-s + 0.692·7-s − 1.32·8-s − 0.938·9-s + 0.790·10-s − 0.610·11-s + 0.444·12-s − 0.351·13-s − 1.15·14-s − 0.117·15-s + 0.424·16-s + 1.33·17-s + 1.56·18-s − 0.629·19-s − 0.848·20-s + 0.171·21-s + 1.02·22-s − 1.55·23-s − 0.328·24-s − 0.776·25-s + 0.586·26-s − 0.480·27-s + 1.24·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9409\)    =    \(97^{2}\)
Sign: $1$
Analytic conductor: \(75.1312\)
Root analytic conductor: \(8.66782\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9409,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4448034355\)
\(L(\frac12)\) \(\approx\) \(0.4448034355\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad97 \( 1 \)
good2 \( 1 + 2.36T + 2T^{2} \)
3 \( 1 - 0.429T + 3T^{2} \)
5 \( 1 + 1.05T + 5T^{2} \)
7 \( 1 - 1.83T + 7T^{2} \)
11 \( 1 + 2.02T + 11T^{2} \)
13 \( 1 + 1.26T + 13T^{2} \)
17 \( 1 - 5.49T + 17T^{2} \)
19 \( 1 + 2.74T + 19T^{2} \)
23 \( 1 + 7.47T + 23T^{2} \)
29 \( 1 - 5.15T + 29T^{2} \)
31 \( 1 - 1.37T + 31T^{2} \)
37 \( 1 - 3.18T + 37T^{2} \)
41 \( 1 + 10.4T + 41T^{2} \)
43 \( 1 - 1.04T + 43T^{2} \)
47 \( 1 + 9.22T + 47T^{2} \)
53 \( 1 - 13.7T + 53T^{2} \)
59 \( 1 - 5.42T + 59T^{2} \)
61 \( 1 - 4.56T + 61T^{2} \)
67 \( 1 + 15.3T + 67T^{2} \)
71 \( 1 - 2.17T + 71T^{2} \)
73 \( 1 + 8.19T + 73T^{2} \)
79 \( 1 + 3.60T + 79T^{2} \)
83 \( 1 - 14.6T + 83T^{2} \)
89 \( 1 + 5.69T + 89T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88387606469666558126957391868, −7.53402711738817309314203021144, −6.57497441482313099263173096967, −5.83732986386363231692751084031, −5.06815912907675404027222244245, −4.09625664437234181464362825612, −3.10830221167526356122140314913, −2.33041215504276785474485934040, −1.58763450958012317847775742179, −0.40317525636576498760838785002, 0.40317525636576498760838785002, 1.58763450958012317847775742179, 2.33041215504276785474485934040, 3.10830221167526356122140314913, 4.09625664437234181464362825612, 5.06815912907675404027222244245, 5.83732986386363231692751084031, 6.57497441482313099263173096967, 7.53402711738817309314203021144, 7.88387606469666558126957391868

Graph of the $Z$-function along the critical line