Properties

Label 2-9702-1.1-c1-0-78
Degree $2$
Conductor $9702$
Sign $1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2.27·5-s + 8-s + 2.27·10-s + 11-s − 4.63·13-s + 16-s − 0.554·17-s + 4.07·19-s + 2.27·20-s + 22-s + 6.93·23-s + 0.171·25-s − 4.63·26-s + 2.82·29-s + 7.68·31-s + 32-s − 0.554·34-s + 10.8·37-s + 4.07·38-s + 2.27·40-s + 0.554·41-s − 8.59·43-s + 44-s + 6.93·46-s − 10.9·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 1.01·5-s + 0.353·8-s + 0.719·10-s + 0.301·11-s − 1.28·13-s + 0.250·16-s − 0.134·17-s + 0.935·19-s + 0.508·20-s + 0.213·22-s + 1.44·23-s + 0.0343·25-s − 0.908·26-s + 0.525·29-s + 1.38·31-s + 0.176·32-s − 0.0950·34-s + 1.78·37-s + 0.661·38-s + 0.359·40-s + 0.0865·41-s − 1.31·43-s + 0.150·44-s + 1.02·46-s − 1.59·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.445891901\)
\(L(\frac12)\) \(\approx\) \(4.445891901\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 - 2.27T + 5T^{2} \)
13 \( 1 + 4.63T + 13T^{2} \)
17 \( 1 + 0.554T + 17T^{2} \)
19 \( 1 - 4.07T + 19T^{2} \)
23 \( 1 - 6.93T + 23T^{2} \)
29 \( 1 - 2.82T + 29T^{2} \)
31 \( 1 - 7.68T + 31T^{2} \)
37 \( 1 - 10.8T + 37T^{2} \)
41 \( 1 - 0.554T + 41T^{2} \)
43 \( 1 + 8.59T + 43T^{2} \)
47 \( 1 + 10.9T + 47T^{2} \)
53 \( 1 - 0.440T + 53T^{2} \)
59 \( 1 + 5.17T + 59T^{2} \)
61 \( 1 - 2.19T + 61T^{2} \)
67 \( 1 + 11.1T + 67T^{2} \)
71 \( 1 + 3.60T + 71T^{2} \)
73 \( 1 - 14.3T + 73T^{2} \)
79 \( 1 - 15.7T + 79T^{2} \)
83 \( 1 - 6.51T + 83T^{2} \)
89 \( 1 - 4.23T + 89T^{2} \)
97 \( 1 - 3.84T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59707159655992327236814887599, −6.67043884478156802575683240672, −6.43013654149151164692283057770, −5.48552228788439949160136406502, −4.94508857249820285055012393814, −4.45145323258622128395809210767, −3.23325929674411569881889109414, −2.73387894166343282327866351614, −1.90018564425422211803507168312, −0.925643581893000526428842730780, 0.925643581893000526428842730780, 1.90018564425422211803507168312, 2.73387894166343282327866351614, 3.23325929674411569881889109414, 4.45145323258622128395809210767, 4.94508857249820285055012393814, 5.48552228788439949160136406502, 6.43013654149151164692283057770, 6.67043884478156802575683240672, 7.59707159655992327236814887599

Graph of the $Z$-function along the critical line