L(s) = 1 | + 2-s + 4-s + 2.27·5-s + 8-s + 2.27·10-s + 11-s − 4.63·13-s + 16-s − 0.554·17-s + 4.07·19-s + 2.27·20-s + 22-s + 6.93·23-s + 0.171·25-s − 4.63·26-s + 2.82·29-s + 7.68·31-s + 32-s − 0.554·34-s + 10.8·37-s + 4.07·38-s + 2.27·40-s + 0.554·41-s − 8.59·43-s + 44-s + 6.93·46-s − 10.9·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + 1.01·5-s + 0.353·8-s + 0.719·10-s + 0.301·11-s − 1.28·13-s + 0.250·16-s − 0.134·17-s + 0.935·19-s + 0.508·20-s + 0.213·22-s + 1.44·23-s + 0.0343·25-s − 0.908·26-s + 0.525·29-s + 1.38·31-s + 0.176·32-s − 0.0950·34-s + 1.78·37-s + 0.661·38-s + 0.359·40-s + 0.0865·41-s − 1.31·43-s + 0.150·44-s + 1.02·46-s − 1.59·47-s + ⋯ |
Λ(s)=(=(9702s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9702s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.445891901 |
L(21) |
≈ |
4.445891901 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 7 | 1 |
| 11 | 1−T |
good | 5 | 1−2.27T+5T2 |
| 13 | 1+4.63T+13T2 |
| 17 | 1+0.554T+17T2 |
| 19 | 1−4.07T+19T2 |
| 23 | 1−6.93T+23T2 |
| 29 | 1−2.82T+29T2 |
| 31 | 1−7.68T+31T2 |
| 37 | 1−10.8T+37T2 |
| 41 | 1−0.554T+41T2 |
| 43 | 1+8.59T+43T2 |
| 47 | 1+10.9T+47T2 |
| 53 | 1−0.440T+53T2 |
| 59 | 1+5.17T+59T2 |
| 61 | 1−2.19T+61T2 |
| 67 | 1+11.1T+67T2 |
| 71 | 1+3.60T+71T2 |
| 73 | 1−14.3T+73T2 |
| 79 | 1−15.7T+79T2 |
| 83 | 1−6.51T+83T2 |
| 89 | 1−4.23T+89T2 |
| 97 | 1−3.84T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.59707159655992327236814887599, −6.67043884478156802575683240672, −6.43013654149151164692283057770, −5.48552228788439949160136406502, −4.94508857249820285055012393814, −4.45145323258622128395809210767, −3.23325929674411569881889109414, −2.73387894166343282327866351614, −1.90018564425422211803507168312, −0.925643581893000526428842730780,
0.925643581893000526428842730780, 1.90018564425422211803507168312, 2.73387894166343282327866351614, 3.23325929674411569881889109414, 4.45145323258622128395809210767, 4.94508857249820285055012393814, 5.48552228788439949160136406502, 6.43013654149151164692283057770, 6.67043884478156802575683240672, 7.59707159655992327236814887599