L(s) = 1 | − 2-s + 4-s + 0.585·5-s − 8-s − 0.585·10-s − 11-s − 3.82·13-s + 16-s − 3.65·17-s − 0.585·19-s + 0.585·20-s + 22-s + 6.24·23-s − 4.65·25-s + 3.82·26-s − 2.65·29-s − 4·31-s − 32-s + 3.65·34-s − 9.41·37-s + 0.585·38-s − 0.585·40-s + 5.41·41-s − 5.65·43-s − 44-s − 6.24·46-s + 10.4·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s + 0.261·5-s − 0.353·8-s − 0.185·10-s − 0.301·11-s − 1.06·13-s + 0.250·16-s − 0.886·17-s − 0.134·19-s + 0.130·20-s + 0.213·22-s + 1.30·23-s − 0.931·25-s + 0.750·26-s − 0.493·29-s − 0.718·31-s − 0.176·32-s + 0.627·34-s − 1.54·37-s + 0.0950·38-s − 0.0926·40-s + 0.845·41-s − 0.862·43-s − 0.150·44-s − 0.920·46-s + 1.52·47-s + ⋯ |
Λ(s)=(=(9702s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9702s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9414401584 |
L(21) |
≈ |
0.9414401584 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 7 | 1 |
| 11 | 1+T |
good | 5 | 1−0.585T+5T2 |
| 13 | 1+3.82T+13T2 |
| 17 | 1+3.65T+17T2 |
| 19 | 1+0.585T+19T2 |
| 23 | 1−6.24T+23T2 |
| 29 | 1+2.65T+29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+9.41T+37T2 |
| 41 | 1−5.41T+41T2 |
| 43 | 1+5.65T+43T2 |
| 47 | 1−10.4T+47T2 |
| 53 | 1+7.89T+53T2 |
| 59 | 1−5.58T+59T2 |
| 61 | 1−11.8T+61T2 |
| 67 | 1−2.75T+67T2 |
| 71 | 1−11.0T+71T2 |
| 73 | 1+9.41T+73T2 |
| 79 | 1+13.2T+79T2 |
| 83 | 1−12.1T+83T2 |
| 89 | 1+12.4T+89T2 |
| 97 | 1+3.82T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.51183389471990926566209118894, −7.19576411792399136382220659439, −6.51882453803484115696885308398, −5.60378833607157166717260971034, −5.09245245511981730746161516684, −4.18720382324560450632702719503, −3.25167360235717898908621419292, −2.36802872553764179731784778409, −1.80070410638963361008062689809, −0.49362482980919079971154421053,
0.49362482980919079971154421053, 1.80070410638963361008062689809, 2.36802872553764179731784778409, 3.25167360235717898908621419292, 4.18720382324560450632702719503, 5.09245245511981730746161516684, 5.60378833607157166717260971034, 6.51882453803484115696885308398, 7.19576411792399136382220659439, 7.51183389471990926566209118894