L(s) = 1 | − 2-s + 4-s + 3·5-s − 8-s − 3·10-s + 11-s − 2·13-s + 16-s − 3·17-s − 2·19-s + 3·20-s − 22-s − 3·23-s + 4·25-s + 2·26-s − 2·31-s − 32-s + 3·34-s + 8·37-s + 2·38-s − 3·40-s − 9·41-s − 4·43-s + 44-s + 3·46-s + 3·47-s − 4·50-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.353·8-s − 0.948·10-s + 0.301·11-s − 0.554·13-s + 1/4·16-s − 0.727·17-s − 0.458·19-s + 0.670·20-s − 0.213·22-s − 0.625·23-s + 4/5·25-s + 0.392·26-s − 0.359·31-s − 0.176·32-s + 0.514·34-s + 1.31·37-s + 0.324·38-s − 0.474·40-s − 1.40·41-s − 0.609·43-s + 0.150·44-s + 0.442·46-s + 0.437·47-s − 0.565·50-s + ⋯ |
Λ(s)=(=(9702s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9702s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 7 | 1 |
| 11 | 1−T |
good | 5 | 1−3T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1+3T+pT2 |
| 29 | 1+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1−8T+pT2 |
| 41 | 1+9T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−3T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1+5T+pT2 |
| 67 | 1−11T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1+13T+pT2 |
| 83 | 1−9T+pT2 |
| 89 | 1−12T+pT2 |
| 97 | 1+5T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.30172107412404859009345345116, −6.59616902877669987132874041325, −6.17527511155602092999588134751, −5.43046248487910812180376537136, −4.68780530333625811906142492584, −3.73894887268912114086430003538, −2.63573240115714471093680970623, −2.09425326723244478904619972866, −1.34095205027911786143302873504, 0,
1.34095205027911786143302873504, 2.09425326723244478904619972866, 2.63573240115714471093680970623, 3.73894887268912114086430003538, 4.68780530333625811906142492584, 5.43046248487910812180376537136, 6.17527511155602092999588134751, 6.59616902877669987132874041325, 7.30172107412404859009345345116