L(s) = 1 | − 2-s + 4-s + 3·5-s − 8-s − 3·10-s + 11-s − 2·13-s + 16-s − 3·17-s − 2·19-s + 3·20-s − 22-s − 3·23-s + 4·25-s + 2·26-s − 2·31-s − 32-s + 3·34-s + 8·37-s + 2·38-s − 3·40-s − 9·41-s − 4·43-s + 44-s + 3·46-s + 3·47-s − 4·50-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.353·8-s − 0.948·10-s + 0.301·11-s − 0.554·13-s + 1/4·16-s − 0.727·17-s − 0.458·19-s + 0.670·20-s − 0.213·22-s − 0.625·23-s + 4/5·25-s + 0.392·26-s − 0.359·31-s − 0.176·32-s + 0.514·34-s + 1.31·37-s + 0.324·38-s − 0.474·40-s − 1.40·41-s − 0.609·43-s + 0.150·44-s + 0.442·46-s + 0.437·47-s − 0.565·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 5 | \( 1 - 3 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 3 T + p T^{2} \) |
| 19 | \( 1 + 2 T + p T^{2} \) |
| 23 | \( 1 + 3 T + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 + 2 T + p T^{2} \) |
| 37 | \( 1 - 8 T + p T^{2} \) |
| 41 | \( 1 + 9 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 - 3 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 - 6 T + p T^{2} \) |
| 61 | \( 1 + 5 T + p T^{2} \) |
| 67 | \( 1 - 11 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 + 13 T + p T^{2} \) |
| 83 | \( 1 - 9 T + p T^{2} \) |
| 89 | \( 1 - 12 T + p T^{2} \) |
| 97 | \( 1 + 5 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.30172107412404859009345345116, −6.59616902877669987132874041325, −6.17527511155602092999588134751, −5.43046248487910812180376537136, −4.68780530333625811906142492584, −3.73894887268912114086430003538, −2.63573240115714471093680970623, −2.09425326723244478904619972866, −1.34095205027911786143302873504, 0,
1.34095205027911786143302873504, 2.09425326723244478904619972866, 2.63573240115714471093680970623, 3.73894887268912114086430003538, 4.68780530333625811906142492584, 5.43046248487910812180376537136, 6.17527511155602092999588134751, 6.59616902877669987132874041325, 7.30172107412404859009345345116