L(s) = 1 | + 2-s + 4-s − 2.82·5-s + 8-s − 2.82·10-s − 11-s + 4.24·13-s + 16-s + 2.82·17-s + 1.41·19-s − 2.82·20-s − 22-s − 6·23-s + 3.00·25-s + 4.24·26-s − 8·29-s − 1.41·31-s + 32-s + 2.82·34-s − 6·37-s + 1.41·38-s − 2.82·40-s − 8.48·41-s + 10·43-s − 44-s − 6·46-s + 7.07·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 1.26·5-s + 0.353·8-s − 0.894·10-s − 0.301·11-s + 1.17·13-s + 0.250·16-s + 0.685·17-s + 0.324·19-s − 0.632·20-s − 0.213·22-s − 1.25·23-s + 0.600·25-s + 0.832·26-s − 1.48·29-s − 0.254·31-s + 0.176·32-s + 0.485·34-s − 0.986·37-s + 0.229·38-s − 0.447·40-s − 1.32·41-s + 1.52·43-s − 0.150·44-s − 0.884·46-s + 1.03·47-s + ⋯ |
Λ(s)=(=(9702s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9702s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 7 | 1 |
| 11 | 1+T |
good | 5 | 1+2.82T+5T2 |
| 13 | 1−4.24T+13T2 |
| 17 | 1−2.82T+17T2 |
| 19 | 1−1.41T+19T2 |
| 23 | 1+6T+23T2 |
| 29 | 1+8T+29T2 |
| 31 | 1+1.41T+31T2 |
| 37 | 1+6T+37T2 |
| 41 | 1+8.48T+41T2 |
| 43 | 1−10T+43T2 |
| 47 | 1−7.07T+47T2 |
| 53 | 1+6T+53T2 |
| 59 | 1−14.1T+59T2 |
| 61 | 1+4.24T+61T2 |
| 67 | 1+4T+67T2 |
| 71 | 1+71T2 |
| 73 | 1−8.48T+73T2 |
| 79 | 1+79T2 |
| 83 | 1−7.07T+83T2 |
| 89 | 1+18.3T+89T2 |
| 97 | 1+1.41T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.41778712323278118655027061120, −6.66121329136082558814821834478, −5.78311394837978738967266114018, −5.37713483173816357730568533469, −4.36089896266003207325585601039, −3.68671553357116794443664839923, −3.48578985938953674834555666432, −2.30936118986711341920204592261, −1.27868173372719731314821292033, 0,
1.27868173372719731314821292033, 2.30936118986711341920204592261, 3.48578985938953674834555666432, 3.68671553357116794443664839923, 4.36089896266003207325585601039, 5.37713483173816357730568533469, 5.78311394837978738967266114018, 6.66121329136082558814821834478, 7.41778712323278118655027061120