L(s) = 1 | − 2-s + 4-s − 8-s + 11-s + 4.24·13-s + 16-s + 2.82·17-s − 4.24·19-s − 22-s − 6·23-s − 5·25-s − 4.24·26-s + 4·29-s − 7.07·31-s − 32-s − 2.82·34-s + 2·37-s + 4.24·38-s − 2.82·41-s + 10·43-s + 44-s + 6·46-s + 12.7·47-s + 5·50-s + 4.24·52-s − 2·53-s − 4·58-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 0.353·8-s + 0.301·11-s + 1.17·13-s + 0.250·16-s + 0.685·17-s − 0.973·19-s − 0.213·22-s − 1.25·23-s − 25-s − 0.832·26-s + 0.742·29-s − 1.27·31-s − 0.176·32-s − 0.485·34-s + 0.328·37-s + 0.688·38-s − 0.441·41-s + 1.52·43-s + 0.150·44-s + 0.884·46-s + 1.85·47-s + 0.707·50-s + 0.588·52-s − 0.274·53-s − 0.525·58-s + ⋯ |
Λ(s)=(=(9702s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9702s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 7 | 1 |
| 11 | 1−T |
good | 5 | 1+5T2 |
| 13 | 1−4.24T+13T2 |
| 17 | 1−2.82T+17T2 |
| 19 | 1+4.24T+19T2 |
| 23 | 1+6T+23T2 |
| 29 | 1−4T+29T2 |
| 31 | 1+7.07T+31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+2.82T+41T2 |
| 43 | 1−10T+43T2 |
| 47 | 1−12.7T+47T2 |
| 53 | 1+2T+53T2 |
| 59 | 1+11.3T+59T2 |
| 61 | 1+9.89T+61T2 |
| 67 | 1−8T+67T2 |
| 71 | 1+16T+71T2 |
| 73 | 1+8.48T+73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1−12.7T+83T2 |
| 89 | 1+7.07T+89T2 |
| 97 | 1+7.07T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.61306098166435554070562429733, −6.65384527303565678162733941289, −5.96843709024867243502708045318, −5.67611566136597490879348210320, −4.30847609020242236869298969714, −3.87591841174532161644364408016, −2.91948815150303705673915894821, −1.96006000917457453118379825711, −1.22292499567795485421307076375, 0,
1.22292499567795485421307076375, 1.96006000917457453118379825711, 2.91948815150303705673915894821, 3.87591841174532161644364408016, 4.30847609020242236869298969714, 5.67611566136597490879348210320, 5.96843709024867243502708045318, 6.65384527303565678162733941289, 7.61306098166435554070562429733