L(s) = 1 | + 2-s + 4-s − 3.29·5-s + 8-s − 3.29·10-s + 11-s − 6.06·13-s + 16-s − 6.11·17-s − 0.0511·19-s − 3.29·20-s + 22-s + 6.75·23-s + 5.82·25-s − 6.06·26-s − 2.82·29-s − 5.87·31-s + 32-s − 6.11·34-s − 8.31·37-s − 0.0511·38-s − 3.29·40-s + 6.11·41-s + 2.90·43-s + 44-s + 6.75·46-s + 1.22·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 1.47·5-s + 0.353·8-s − 1.04·10-s + 0.301·11-s − 1.68·13-s + 0.250·16-s − 1.48·17-s − 0.0117·19-s − 0.735·20-s + 0.213·22-s + 1.40·23-s + 1.16·25-s − 1.19·26-s − 0.525·29-s − 1.05·31-s + 0.176·32-s − 1.04·34-s − 1.36·37-s − 0.00830·38-s − 0.520·40-s + 0.955·41-s + 0.442·43-s + 0.150·44-s + 0.996·46-s + 0.178·47-s + ⋯ |
Λ(s)=(=(9702s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9702s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.428389843 |
L(21) |
≈ |
1.428389843 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 7 | 1 |
| 11 | 1−T |
good | 5 | 1+3.29T+5T2 |
| 13 | 1+6.06T+13T2 |
| 17 | 1+6.11T+17T2 |
| 19 | 1+0.0511T+19T2 |
| 23 | 1−6.75T+23T2 |
| 29 | 1+2.82T+29T2 |
| 31 | 1+5.87T+31T2 |
| 37 | 1+8.31T+37T2 |
| 41 | 1−6.11T+41T2 |
| 43 | 1−2.90T+43T2 |
| 47 | 1−1.22T+47T2 |
| 53 | 1+3.00T+53T2 |
| 59 | 1−10.8T+59T2 |
| 61 | 1+7.23T+61T2 |
| 67 | 1+1.68T+67T2 |
| 71 | 1−6.47T+71T2 |
| 73 | 1−11.6T+73T2 |
| 79 | 1+9.13T+79T2 |
| 83 | 1−0.951T+83T2 |
| 89 | 1−16.5T+89T2 |
| 97 | 1−14.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.35170814516782130737453716772, −7.16798147419579201683405327998, −6.48198029136288287342807993070, −5.33985501034940280663043258970, −4.83893546751801490243629746624, −4.20242521733884771193054980402, −3.59234964998733652369681809273, −2.76327536133862309440637462533, −1.96854263231814288239933533311, −0.48397340880622314036807803054,
0.48397340880622314036807803054, 1.96854263231814288239933533311, 2.76327536133862309440637462533, 3.59234964998733652369681809273, 4.20242521733884771193054980402, 4.83893546751801490243629746624, 5.33985501034940280663043258970, 6.48198029136288287342807993070, 7.16798147419579201683405327998, 7.35170814516782130737453716772