L(s) = 1 | − 2-s + 4-s − 2·5-s − 8-s + 2·10-s − 11-s − 2·13-s + 16-s + 17-s + 3·19-s − 2·20-s + 22-s + 23-s − 25-s + 2·26-s + 29-s + 2·31-s − 32-s − 34-s − 5·37-s − 3·38-s + 2·40-s − 10·41-s + 43-s − 44-s − 46-s + 7·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.353·8-s + 0.632·10-s − 0.301·11-s − 0.554·13-s + 1/4·16-s + 0.242·17-s + 0.688·19-s − 0.447·20-s + 0.213·22-s + 0.208·23-s − 1/5·25-s + 0.392·26-s + 0.185·29-s + 0.359·31-s − 0.176·32-s − 0.171·34-s − 0.821·37-s − 0.486·38-s + 0.316·40-s − 1.56·41-s + 0.152·43-s − 0.150·44-s − 0.147·46-s + 1.02·47-s + ⋯ |
Λ(s)=(=(9702s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9702s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7757359258 |
L(21) |
≈ |
0.7757359258 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 7 | 1 |
| 11 | 1+T |
good | 5 | 1+2T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1−T+pT2 |
| 19 | 1−3T+pT2 |
| 23 | 1−T+pT2 |
| 29 | 1−T+pT2 |
| 31 | 1−2T+pT2 |
| 37 | 1+5T+pT2 |
| 41 | 1+10T+pT2 |
| 43 | 1−T+pT2 |
| 47 | 1−7T+pT2 |
| 53 | 1+12T+pT2 |
| 59 | 1+3T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1+5T+pT2 |
| 73 | 1−8T+pT2 |
| 79 | 1+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1+7T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.85747770802078815545372392454, −7.07460183022210449527023211966, −6.65765666986493420660734961996, −5.56720138691284046709681890077, −5.02902822390966345594923202582, −4.07525073211865380356777462168, −3.34421680996131307135244884602, −2.59569625731930446489042912023, −1.56672594819181568856264595472, −0.47141604315454646824999418909,
0.47141604315454646824999418909, 1.56672594819181568856264595472, 2.59569625731930446489042912023, 3.34421680996131307135244884602, 4.07525073211865380356777462168, 5.02902822390966345594923202582, 5.56720138691284046709681890077, 6.65765666986493420660734961996, 7.07460183022210449527023211966, 7.85747770802078815545372392454