L(s) = 1 | − 2-s + 4-s − 8-s + 11-s − 2·13-s + 16-s − 6·17-s − 2·19-s − 22-s − 5·25-s + 2·26-s + 6·29-s + 4·31-s − 32-s + 6·34-s + 2·37-s + 2·38-s + 6·41-s − 10·43-s + 44-s + 12·47-s + 5·50-s − 2·52-s + 12·53-s − 6·58-s + 12·59-s + 10·61-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.353·8-s + 0.301·11-s − 0.554·13-s + 1/4·16-s − 1.45·17-s − 0.458·19-s − 0.213·22-s − 25-s + 0.392·26-s + 1.11·29-s + 0.718·31-s − 0.176·32-s + 1.02·34-s + 0.328·37-s + 0.324·38-s + 0.937·41-s − 1.52·43-s + 0.150·44-s + 1.75·47-s + 0.707·50-s − 0.277·52-s + 1.64·53-s − 0.787·58-s + 1.56·59-s + 1.28·61-s + ⋯ |
Λ(s)=(=(9702s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9702s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 7 | 1 |
| 11 | 1−T |
good | 5 | 1+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+10T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1−12T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1+12T+pT2 |
| 73 | 1+14T+pT2 |
| 79 | 1−2T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.22256681200124913942068687753, −6.86319691613869780218188863622, −6.13488512587456810544110169825, −5.40474200258705758947525517831, −4.41604514672277597522072986408, −3.93582844976437782803839905400, −2.64565898313481655439998497825, −2.25338768348159295239588485846, −1.09696957382779221676747338783, 0,
1.09696957382779221676747338783, 2.25338768348159295239588485846, 2.64565898313481655439998497825, 3.93582844976437782803839905400, 4.41604514672277597522072986408, 5.40474200258705758947525517831, 6.13488512587456810544110169825, 6.86319691613869780218188863622, 7.22256681200124913942068687753