L(s) = 1 | − 2-s + 4-s − 1.41·5-s − 8-s + 1.41·10-s − 11-s + 1.41·13-s + 16-s + 1.41·17-s − 2.82·19-s − 1.41·20-s + 22-s + 4·23-s − 2.99·25-s − 1.41·26-s + 6·29-s − 2.82·31-s − 32-s − 1.41·34-s − 8·37-s + 2.82·38-s + 1.41·40-s + 7.07·41-s − 8·43-s − 44-s − 4·46-s + 8.48·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 0.632·5-s − 0.353·8-s + 0.447·10-s − 0.301·11-s + 0.392·13-s + 0.250·16-s + 0.342·17-s − 0.648·19-s − 0.316·20-s + 0.213·22-s + 0.834·23-s − 0.599·25-s − 0.277·26-s + 1.11·29-s − 0.508·31-s − 0.176·32-s − 0.242·34-s − 1.31·37-s + 0.458·38-s + 0.223·40-s + 1.10·41-s − 1.21·43-s − 0.150·44-s − 0.589·46-s + 1.23·47-s + ⋯ |
Λ(s)=(=(9702s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9702s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 7 | 1 |
| 11 | 1+T |
good | 5 | 1+1.41T+5T2 |
| 13 | 1−1.41T+13T2 |
| 17 | 1−1.41T+17T2 |
| 19 | 1+2.82T+19T2 |
| 23 | 1−4T+23T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+2.82T+31T2 |
| 37 | 1+8T+37T2 |
| 41 | 1−7.07T+41T2 |
| 43 | 1+8T+43T2 |
| 47 | 1−8.48T+47T2 |
| 53 | 1+53T2 |
| 59 | 1+59T2 |
| 61 | 1+7.07T+61T2 |
| 67 | 1+8T+67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1−1.41T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−2.82T+83T2 |
| 89 | 1+9.89T+89T2 |
| 97 | 1−15.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.44101026525792074041023290162, −6.83241933588875437708540172818, −6.11686917129522057351557448824, −5.35074155741522510869068543679, −4.52228542407737730630259468249, −3.69952845422182766797975115257, −2.99428346365492788390692356300, −2.06572600660909889910839720824, −1.06399021800454625787883543368, 0,
1.06399021800454625787883543368, 2.06572600660909889910839720824, 2.99428346365492788390692356300, 3.69952845422182766797975115257, 4.52228542407737730630259468249, 5.35074155741522510869068543679, 6.11686917129522057351557448824, 6.83241933588875437708540172818, 7.44101026525792074041023290162